Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 45b80ab683972900_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/45b80ab683972900_train_data.json
  type:
    field_input: ''
    field_instruction: content
    field_output: abstract
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: infogeo/6ece6068-1df8-4a49-8584-1e2fbb2a4b73
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 79GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/45b80ab683972900_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0c575359-42e2-4b55-a14a-9422eeab4ef0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0c575359-42e2-4b55-a14a-9422eeab4ef0
warmup_steps: 5
weight_decay: 0.001
xformers_attention: true

6ece6068-1df8-4a49-8584-1e2fbb2a4b73

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.0821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 11.0915
44.3651 0.0004 5 11.0905
44.3558 0.0007 10 11.0874
44.3415 0.0011 15 11.0846
44.3353 0.0014 20 11.0829
44.3302 0.0018 25 11.0822
44.3276 0.0022 30 11.0821

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for infogeo/6ece6068-1df8-4a49-8584-1e2fbb2a4b73

Adapter
(273)
this model