File size: 17,392 Bytes
8e1010d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import torch
import torch.nn as nn
from torch.nn.init import trunc_normal_
import torch.nn.functional as F
import re
import math
import numpy as np
import random

class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels),
            nn.GELU(),
            nn.Linear(channels, channels)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


class SlotAttention(nn.Module):
    """Slot Attention module."""

    def __init__(self, num_slots, encoder_dims, iters=3, hidden_dim=128, out_dim=128, eps=1e-4):
        """Builds the Slot Attention module.
        Args:
            iters: Number of iterations.
            num_slots: Number of slots.
            encoder_dims: Dimensionality of slot feature vectors.
            hidden_dim: Hidden layer size of MLP.
            eps: Offset for attention coefficients before normalization.
        """
        super(SlotAttention, self).__init__()
        
        self.eps = eps
        self.iters = iters
        self.num_slots = num_slots
        self.scale = encoder_dims ** -0.5
        self.norm_input = nn.LayerNorm(encoder_dims)
        self.norm_slots = nn.LayerNorm(encoder_dims)
        self.norm_pre_ff = nn.LayerNorm(encoder_dims)

        self.slots_embedding = nn.Parameter(torch.randn(1, num_slots, encoder_dims))
        self.project_q = nn.Linear(encoder_dims, encoder_dims)
        self.project_k = nn.Linear(encoder_dims, encoder_dims)
        self.project_v = nn.Linear(encoder_dims, encoder_dims)

        hidden_dim = max(encoder_dims, hidden_dim)
        self.mlp = nn.Sequential(
            nn.Linear(encoder_dims, hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, encoder_dims)
        )

        self.head = nn.Linear(encoder_dims, out_dim)

    def forward(self, inputs):
        # inputs has shape [batch_size, num_inputs, inputs_size].
        inputs = self.norm_input(inputs)  # Apply layer norm to the input.
        k = self.project_k(inputs)  # Shape: [batch_size, num_inputs, slot_size].
        v = self.project_v(inputs)  # Shape: [batch_size, num_inputs, slot_size].

        # Initialize the slots. Shape: [batch_size, num_slots, slot_size].
        b, n, d = inputs.shape
        n_s = self.num_slots

        # learnable slots initializations
        init_slots = self.slots_embedding.expand(b, -1, -1)
        slots = init_slots
        # Multiple rounds of attention.
        for t in range(self.iters):
            slots_prev = slots
            slots = self.norm_slots(slots)

            # Attention.
            q = self.project_q(slots)  # Shape: [batch_size, num_slots, slot_size].
            dots = torch.einsum('bid,bjd->bij', q, k) * self.scale
            attn = dots.softmax(dim=1) + self.eps
            attn = attn / attn.sum(dim=-1, keepdim=True)  # weighted mean.

            updates = torch.einsum('bjd,bij->bid', v, attn)
            # `updates` has shape: [batch_size, num_slots, slot_size].

            # Slot update.
            slots = slots_prev + updates
            slots = slots + self.mlp(self.norm_pre_ff(slots))
            if t == self.iters-2:
                slots = slots.detach() - init_slots.detach() + init_slots

        output = self.head(slots)

        return output


class PerceiverSampler(nn.Module):

    def __init__(self, num_query_token, num_vision_features, out_size):
        super(PerceiverSampler, self).__init__()
        self.Qformer, self.query_tokens = self.init_qformer(
            num_query_token, num_vision_features)
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None
        self.Qformer.cls = None
        self.ln_vision = nn.LayerNorm(num_vision_features)
        self.head = nn.Linear(self.Qformer.config.hidden_size, out_size)

    @classmethod
    def init_qformer(cls,
                     num_query_token,
                     vision_width,
                     cross_attention_freq=2,
                     pretrain=True):
        encoder_config = BertConfig()
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel(config=encoder_config)
        query_tokens = nn.Parameter(
            torch.randn(1, num_query_token, encoder_config.hidden_size))
        query_tokens.data.normal_(mean=0.0,
                                  std=encoder_config.initializer_range)
        return Qformer, query_tokens

    def forward(self, inputs):
        image_embeds = self.ln_vision(inputs)
        image_atts = torch.ones(image_embeds.size()[:-1],
                                dtype=torch.long).to(inputs.device)
        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )
        output = self.head(query_output.last_hidden_state)
        return output


class MultiProjector(nn.Module):

    def __init__(self, mlp, sa):
        super(MultiProjector, self).__init__()
        self.mlp = mlp
        self.sa = sa

    def forward(self, inputs, projector=None):
        if not self.training:
            output = self.mlp(inputs)
            return output

        idx_mlp = torch.where(projector==0)[0]
        idx_sa = torch.where(projector==1)[0]
        feat_mlp = self.mlp(inputs)
        feat_sa = self.sa(inputs)

        if len(idx_mlp) == 0:
            projector[random.randint(0, projector.shape[0]-1), 0] = 0
        elif len(idx_sa) == 0:
            projector[random.randint(0, projector.shape[0]-1), 0] = 1
        
        idx_mlp = torch.where(projector==0)[0]
        idx_sa = torch.where(projector==1)[0]

        output = []
        for i in range(inputs.shape[0]):
            if i in idx_mlp:
                output.append(feat_mlp[i])
            if i in idx_sa:
                output.append(feat_sa[i])
        assert len(output) == inputs.shape[0]
        return output


class CompressProjector(nn.Module):

    def __init__(self, mlp, num_slot, embed_dim):
        super(CompressProjector, self).__init__()
        self.mlp = mlp
        self.num_slot = num_slot
        self.query = nn.Parameter(torch.zeros(num_slot, embed_dim))
        trunc_normal_(self.query, std=.02)

    def forward(self, inputs, projector=None):
        
        if type(inputs) is list:
            concat_images, concat_features = inputs
            concat_combine = torch.cat(
                [concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
            concat_combine = self.mlp(concat_combine)
            concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
            concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
            image_query = self.query.expand(concat_images.shape[0], -1, -1)
            concat_images = torch.cat([concat_images, image_query], dim=1)
            feature_query = self.query.expand(concat_features.shape[0], -1, -1)
            concat_features = torch.cat([concat_features, feature_query], dim=1)
            return concat_images, concat_features

        output = self.mlp(inputs)
        query = self.query.expand(output.shape[0], -1, -1)
        output = torch.cat([output, query], dim=1)
        return output


class PoolProjector(nn.Module):

    def __init__(self, mlp, resolution, pool_num):
        super(PoolProjector, self).__init__()
        self.mlp = mlp
        self.pool_num = pool_num
        self.resolution = resolution

    def forward(self, inputs, projector=None):
        
        if type(inputs) is list:
            concat_images, concat_features = inputs
            assert concat_images.shape[1] == self.resolution
            h = int(np.sqrt(self.resolution))
            grid = int(np.sqrt(self.pool_num))
            n, k, c = concat_images.shape
            image_maps = concat_images.view(n, h, h, c)
            image_maps = image_maps.view(n, grid, h//grid, grid, h//grid, c)
            image_maps = image_maps.permute(0, 1, 3, 2, 4, 5).contiguous()
            image_maps = image_maps.view(n, self.pool_num, self.resolution//self.pool_num, c)
            image_slot = torch.mean(image_maps, dim=-2)
            image_global = torch.mean(concat_images, dim=1, keepdim=True)
            n, k, c = concat_features.shape
            video_maps = concat_features.view(n, k//self.resolution, h, h, c)
            video_maps = video_maps.view(n, k//self.resolution, grid, h//grid, grid, h//grid, c)
            video_maps = video_maps.permute(0, 1, 2, 4, 3, 5, 6).contiguous()
            video_maps = video_maps.view(n, k//self.resolution, self.pool_num, self.resolution//self.pool_num, c)
            video_slot = torch.mean(video_maps, dim=-2).view(n, k//self.resolution*self.pool_num, c)
            video_global = torch.mean(concat_features, dim=1, keepdim=True)
            concat_images = torch.cat([concat_images, image_slot, image_global], dim=1) # stage 2 n k+1 c
            concat_features = torch.cat([concat_features, video_slot, video_global], dim=1) # stage 2 n tk+t c
            # concat_images = torch.cat([concat_images, image_slot], dim=1) # stage 1 n k c
            # concat_features = torch.cat([concat_features, video_slot], dim=1) # stage 1 n tk c
            concat_combine = torch.cat(
                [concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
            concat_combine = self.mlp(concat_combine)
            concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
            concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
            return concat_images, concat_features

        n, k, c = inputs.shape
        h = int(np.sqrt(self.resolution))
        grid = int(np.sqrt(self.pool_num))
        maps = inputs.view(n, k//self.resolution, h, h, c)
        maps = maps.view(n, k//self.resolution, grid, h//grid, grid, h//grid, c)
        maps = maps.permute(0, 1, 2, 4, 3, 5, 6).contiguous()
        maps = maps.view(n, k//self.resolution, self.pool_num, self.resolution//self.pool_num, c)
        slot = torch.mean(maps, dim=-2).view(n, k//self.resolution*self.pool_num, c)
        global_pool = torch.mean(inputs, dim=1, keepdim=True)
        output = self.mlp(torch.cat([inputs, slot, global_pool], dim=1)) # stage 2
        # output = self.mlp(torch.cat([inputs, slot], dim=1)) # stage 1
        return output


class BaseProjector(nn.Module):

    def __init__(self, mlp):
        super(BaseProjector, self).__init__()
        self.mlp = mlp

    def forward(self, inputs, projector=None):
        
        if type(inputs) is list:
            concat_images, concat_features = inputs
            time_token = torch.mean(concat_features, dim=2) # n t c
            spatial_token = torch.mean(concat_features, dim=1) # n k c
            concat_features = torch.cat([time_token, spatial_token], dim=1) # n t+k c
            concat_combine = torch.cat(
                [concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
            concat_combine = self.mlp(concat_combine)
            concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
            concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
            return concat_images, concat_features
        
        if inputs.ndim == 3:
            output = self.mlp(inputs)
            return output
        
        if inputs.ndim == 4:
            time_token = torch.mean(inputs, dim=2) # n t c
            spatial_token = torch.mean(inputs, dim=1) # n k c
            token = torch.cat([time_token, spatial_token], dim=1)
            output = self.mlp(token) # n t+k c
            return output


class BaseMixProjector(nn.Module):

    def __init__(self, mlp):
        super(BaseMixProjector, self).__init__()
        self.mlp = mlp

    def forward(self, inputs, projector=None):
        
        if type(inputs) is list:
            concat_images, concat_features = inputs
            n, t, k, c = concat_features.shape
            concat_features = concat_features.view(n, t*k, c) # n t*k c
            concat_combine = torch.cat(
                [concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0)
            concat_combine = self.mlp(concat_combine)
            concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1)
            concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1)
            return concat_images, concat_features
        
        if inputs.ndim == 3:
            output = self.mlp(inputs)
            return output
        
        if inputs.ndim == 4:
            n, t, k, c = inputs.shape
            token = inputs.view(n, t*k, c)
            output = self.mlp(token) # n t*k c
            return output


def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == 'identity':
        return IdentityMap()
    
    if projector_type == 'slot':
        return SlotAttention(config.n_slot, config.mm_hidden_size, 3, config.hidden_size, config.hidden_size)
    
    if projector_type == 'perceiver':
        return PerceiverSampler(config.n_slot, config.mm_hidden_size, config.hidden_size)

    if projector_type == 'mlpslot':
        mlp_depth = 2
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        sa = SlotAttention(config.n_slot, config.mm_hidden_size, 3, config.hidden_size, config.hidden_size)
        return MultiProjector(mlp, sa)
    
    if projector_type == 'compress':
        mlp_depth = 2
        modules = [nn.Linear(4*config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        return CompressProjector(mlp, config.n_slot, config.hidden_size)

    if projector_type == 'pool':
        mlp_depth = 2
        modules = [nn.Linear(4*config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        pool_num = config.pool_num if hasattr(config, 'pool_num') else 1
        return PoolProjector(mlp, config.resolution, pool_num)

    if projector_type == 'base':
        mlp_depth = 2
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        return BaseProjector(mlp)

    if projector_type == 'base_mix':
        mlp_depth = 2
        modules = [nn.Linear(4*config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        return BaseMixProjector(mlp)

    raise ValueError(f'Unknown projector type: {projector_type}')