|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
from modeling_qwen import * |
|
from configuration_qwen import Qwen2Config |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
|
|
|
|
class GroundQwenConfig(Qwen2Config): |
|
model_type = "ground_qwen" |
|
|
|
|
|
class LlavaQwenModel(LlavaMetaModel, Qwen2Model): |
|
config_class = GroundQwenConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(LlavaQwenModel, self).__init__(config) |
|
|
|
class GroundQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): |
|
config_class = GroundQwenConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config): |
|
super(Qwen2ForCausalLM, self).__init__(config) |
|
self.model = LlavaQwenModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LlavaQwenModel): |
|
module.gradient_checkpointing = value |
|
|
|
def forward_grounding( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
qs_ids: Optional[torch.LongTensor] = None, |
|
qs_mask: Optional[torch.Tensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
projector: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
return_simi: Optional[bool] = False, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
|
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
clip_embeds, |
|
qs_embeds, |
|
qs_mask, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
qs_ids, |
|
qs_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
projector |
|
) |
|
if isinstance(labels, tuple): |
|
labels, indicators = labels |
|
else: |
|
indicators = None |
|
|
|
loss, similarity, global_memory, clip_memory = super().forward_grounding_hm( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
clip_embeds=torch.stack(clip_embeds, dim=0), |
|
qs_embeds=qs_embeds, |
|
qs_mask=qs_mask, |
|
labels=labels, |
|
time_labels=time_labels, |
|
indicators=indicators, |
|
return_simi=return_simi, |
|
select_layer=100, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
return similarity, global_memory, clip_memory |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
qs_ids: Optional[torch.LongTensor] = None, |
|
qs_mask: Optional[torch.Tensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
projector: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
|
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
clip_embeds, |
|
qs_embeds, |
|
qs_mask, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
qs_ids, |
|
qs_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
projector |
|
) |
|
if isinstance(labels, tuple): |
|
labels, indicators = labels |
|
else: |
|
indicators = None |
|
|
|
loss, similarity = super().forward_grounding_hm( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
clip_embeds=torch.stack(clip_embeds, dim=0), |
|
qs_embeds=qs_embeds, |
|
qs_mask=qs_mask, |
|
labels=labels, |
|
time_labels=time_labels, |
|
indicators=indicators, |
|
select_layer=100, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
return CausalLMOutputWithPast(loss=loss, past_key_values=past_key_values) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, indicators=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
_inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, indicators=indicators, **kwargs |
|
) |
|
if images is not None: |
|
_inputs['images'] = images |
|
return _inputs |
|
|
|
AutoConfig.register("ground_qwen", GroundQwenConfig) |
|
AutoModelForCausalLM.register(GroundQwenConfig, GroundQwenForCausalLM) |
|
|