|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from transformers.utils import is_flash_attn_2_available |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]: |
|
""" |
|
Retrieves indexing data required to repad unpadded (ragged) tensors. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. |
|
|
|
Return: |
|
indices (`torch.Tensor): |
|
The indices of non-masked tokens from the flattened input sequence. |
|
cu_seqlens (`torch.Tensor`): |
|
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). |
|
max_seqlen_in_batch (`int`): |
|
Maximum sequence length in batch. |
|
""" |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _upad_input( |
|
query_layer: torch.Tensor, |
|
key_layer: torch.Tensor, |
|
value_layer: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
query_length: int, |
|
): |
|
""" |
|
Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches. |
|
|
|
This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary |
|
tensors for query, key, value tensors. |
|
|
|
Arguments: |
|
query_layer (`torch.Tensor`): |
|
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). |
|
key_layer (`torch.Tensor`): |
|
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
value_layer (`torch.Tensor`): |
|
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
attention_mask (`torch.Tensor`): |
|
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. |
|
query_length (`int`): |
|
Target length. |
|
|
|
Return: |
|
query_layer (`torch.Tensor): |
|
Query state without padding. Shape: (total_target_length, num_heads, head_dim). |
|
key_layer (`torch.Tensor`): |
|
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
value_layer (`torch.Tensor`): |
|
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
indices_q (`torch.Tensor`): |
|
The indices of non-masked tokens from the flattened input target sequence. |
|
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): |
|
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): |
|
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). |
|
""" |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
def prepare_fa2_from_position_ids(query, key, value, position_ids): |
|
""" |
|
This function returns necessary arguments to call `flash_attn_varlen_func`. |
|
All three query, key, value states will be flattened. |
|
Cummulative lengths of each examples in the batch will be extracted from position_ids. |
|
|
|
NOTE: ideally cummulative lengths should be prepared at the data collator stage |
|
|
|
Arguments: |
|
query (`torch.Tensor`): |
|
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). |
|
key (`torch.Tensor`): |
|
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
value (`torch.Tensor`): |
|
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
position_ids (`torch.Tensor`): |
|
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. |
|
|
|
Return: |
|
query (`torch.Tensor): |
|
Query state without padding. Shape: (total_target_length, num_heads, head_dim). |
|
key (`torch.Tensor`): |
|
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
value (`torch.Tensor`): |
|
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
indices_q (`torch.Tensor`): |
|
The indices of non-masked tokens from the flattened input target sequence. |
|
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): |
|
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): |
|
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). |
|
""" |
|
query = query.view(-1, query.size(-2), query.size(-1)) |
|
key = key.view(-1, key.size(-2), key.size(-1)) |
|
value = value.view(-1, value.size(-2), value.size(-1)) |
|
position_ids = position_ids.flatten() |
|
indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32) |
|
|
|
cu_seq_lens = torch.cat( |
|
( |
|
indices_q[position_ids == 0], |
|
torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32), |
|
) |
|
) |
|
|
|
max_length = position_ids.max() + 1 |
|
|
|
return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length)) |
|
|
|
|
|
def _flash_attention_forward( |
|
query_states: torch.Tensor, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
query_length: int, |
|
is_causal: bool, |
|
dropout: float = 0.0, |
|
position_ids: Optional[torch.Tensor] = None, |
|
softmax_scale: Optional[float] = None, |
|
sliding_window: Optional[int] = None, |
|
use_top_left_mask: bool = False, |
|
softcap: Optional[float] = None, |
|
deterministic: bool = None, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_top_left_mask (`bool`, defaults to `False`): |
|
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. |
|
softcap (`float`, *optional*): |
|
Softcap for the attention logits, used e.g. in gemma2. |
|
deterministic (`bool`, *optional*): |
|
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled. |
|
""" |
|
if not use_top_left_mask: |
|
causal = is_causal |
|
else: |
|
|
|
causal = is_causal and query_length != 1 |
|
|
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window |
|
) |
|
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} |
|
|
|
if deterministic is None: |
|
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" |
|
flash_kwargs["deterministic"] = deterministic |
|
|
|
if softcap is not None: |
|
flash_kwargs["softcap"] = softcap |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
**flash_kwargs, |
|
) |
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
|
|
|
|
|
|
elif ( |
|
position_ids is not None and not (position_ids[:, -1] == position_ids.size(1) - 1).all() and query_length != 1 |
|
): |
|
batch_size = query_states.size(0) |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids( |
|
query_states, key_states, value_states, position_ids |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
**flash_kwargs, |
|
) |
|
|
|
attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1)) |
|
|
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs |
|
) |
|
|
|
return attn_output |