yhcao's picture
upload models
8e1010d
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2 model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from configuration_qwen import Qwen2Config
if is_flash_attn_2_available():
from modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
_CONFIG_FOR_DOC = "Qwen2Config"
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
class Qwen2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Qwen2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
class Qwen2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Qwen2Attention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = Qwen2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2FlashAttention2(Qwen2Attention):
"""
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
config.max_window_layers layers.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
indicators: Optional[torch.LongTensor] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
sliding_window = self.config.sliding_window
else:
sliding_window = None
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=sliding_window,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralSdpaAttention with Mixtral->Qwen2
class Qwen2SdpaAttention(Qwen2Attention):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2Attention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
indicators: Optional[torch.LongTensor] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# stage 1 processing
# q k v batch head len channel
# indicators batch len
# with torch.no_grad():
# if causal_mask is None:
# causal_mask = torch.ones(query_states.shape[-2], key_states.shape[-2], device=query_states.device)
# causal_mask = torch.tril(causal_mask).unsqueeze(0).repeat([indicators.shape[0], 1, 1])
# for batch_idx in range(indicators.shape[0]):
# query_index = torch.where(indicators[batch_idx]==100)[0]
# if len(query_index) == 0:
# continue
# causal_mask[batch_idx, query_index[-1]+1:, :query_index[0]] = 0
# causal_mask = causal_mask.unsqueeze(1).bool()
# else:
# # causal_mask batch 1 len len
# causal_mask = torch.clone(causal_mask)
# min_val = torch.min(causal_mask)
# for batch_idx in range(indicators.shape[0]):
# query_index = torch.where(indicators[batch_idx]==100)[0]
# if len(query_index) == 0:
# continue
# causal_mask[batch_idx, 0, query_index[-1]+1:, :query_index[0]] = min_val
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
QWEN2_ATTENTION_CLASSES = {
"eager": Qwen2Attention,
"flash_attention_2": Qwen2FlashAttention2,
"sdpa": Qwen2SdpaAttention,
}
class Qwen2DecoderLayer(nn.Module):
def __init__(self, config: Qwen2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
# config._attn_implementation = 'flash_attention_2' # stage 2
if config.sliding_window and config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
indicators: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
indicators=indicators,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
QWEN2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Qwen2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2PreTrainedModel(PreTrainedModel):
config_class = Qwen2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
QWEN2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
QWEN2_START_DOCSTRING,
)
class Qwen2Model(Qwen2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
Args:
config: Qwen2Config
"""
def __init__(self, config: Qwen2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
indicators: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
select_layer: Optional[int] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
use_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache) and not self.training:
use_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
indicators,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
indicators=indicators,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if select_layer is not None:
if i == select_layer:
break
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Qwen2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward_grounding_hm(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
clip_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
qs_embeds: Optional[torch.FloatTensor] = None,
qs_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
time_labels: Optional[torch.FloatTensor] = None,
indicators: Optional[torch.LongTensor] = None,
return_simi: Optional[bool] = False,
select_layer: Optional[int] = None,
**kwargs,
) -> torch.FloatTensor:
block_size = 1
n_seq = inputs_embeds.shape[0]
global_embeds = []
global_masks = []
global_indicators = []
global_embeds.append(inputs_embeds)
global_masks.append(attention_mask)
global_indicators.append(indicators)
with torch.no_grad():
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer)
hidden_states = outputs[0]
clip_memory = hidden_states[indicators==100]
full_time = hidden_states[indicators==200]
with torch.no_grad():
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0)
memory_mask = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator = torch.ones_like(memory_embeds[:, :, 0])
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer)
hidden_states = outputs[0]
global_memory = hidden_states[0, -full_time.shape[0]:]
n_qs = qs_embeds.shape[0]
new_embeds = []
new_masks = []
new_indicators = []
for batch_idx in range(qs_embeds.shape[0]):
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) # n+k c
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0)
indicator = torch.zeros_like(new_mask)
indicator[torch.where(new_mask==1)[0][-1]] = 1
new_masks.append(new_mask)
new_indicators.append(indicator)
current_embeds = torch.stack(new_embeds, dim=0)
current_mask = torch.stack(new_masks, dim=0)
current_indicators = torch.stack(new_indicators, dim=0)
global_embeds.append(current_embeds)
global_masks.append(current_mask)
global_indicators.append(current_indicators)
max_len = max(x.shape[1] for x in global_embeds)
for i in range(len(global_embeds)):
embed_padded = torch.zeros(
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]),
dtype=global_embeds[i].dtype,
device=global_embeds[i].device
)
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1)
mask_padded = torch.zeros(
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]),
dtype=global_masks[i].dtype,
device=global_masks[i].device
)
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1)
indicator_padded = torch.zeros(
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]),
dtype=global_indicators[i].dtype,
device=global_indicators[i].device
)
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1)
global_embeds = torch.cat(global_embeds, dim=0) # nv+nq k c
global_masks = torch.cat(global_masks, dim=0)
global_indicators = torch.cat(global_indicators, dim=0)
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer)
final_states = outputs[0]
full_time = []
full_qs = []
for i in range(n_seq):
time = final_states[i][global_indicators[i]==200]
full_time.append(time)
for i in range(n_qs):
qs_token = final_states[i+n_seq][global_indicators[i+n_seq]==1]
full_qs.append(qs_token)
full_time = torch.cat(full_time, dim=0) # nv c
full_qs = torch.cat(full_qs, dim=0) # nq c
# print(full_time.shape, full_qs.shape)
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2)
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2)
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) # q n
if return_simi:
return 0.0, similarity, global_memory, clip_memory
similarity = torch.softmax(similarity/0.1, dim=-1)
loss = - torch.sum(time_labels*torch.log(similarity+1e-4), dim=-1).mean() - 0.01*torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean() if time_labels is not None else 0*(-torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean())
return loss, similarity, global_memory, clip_memory
def forward_token(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
clip_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
qs_embeds: Optional[torch.FloatTensor] = None,
qs_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
time_labels: Optional[torch.FloatTensor] = None,
indicators: Optional[torch.LongTensor] = None,
select_layer: Optional[int] = None,
**kwargs,
) -> torch.FloatTensor:
if self.training and qs_embeds is None: # caption only
block_size = 1
n_seq = inputs_embeds.shape[0]
global_embeds = []
global_masks = []
global_indicators = []
global_embeds.append(inputs_embeds)
global_masks.append(attention_mask)
global_indicators.append(indicators)
with torch.no_grad():
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer)
hidden_states = outputs[0]
clip_memory = hidden_states[indicators==100] # nseq*k c
full_time = hidden_states[indicators==200] # nseq c
with torch.no_grad():
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0)
memory_mask = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator[:, -full_time.shape[0]:] = 150
global_embeds.append(memory_embeds)
global_indicators.append(memory_indicator)
global_masks.append(memory_mask)
max_len = max(x.shape[1] for x in global_embeds)
for i in range(len(global_embeds)):
embed_padded = torch.zeros(
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]),
dtype=global_embeds[i].dtype,
device=global_embeds[i].device
)
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1)
mask_padded = torch.zeros(
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]),
dtype=global_masks[i].dtype,
device=global_masks[i].device
)
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1)
indicator_padded = torch.zeros(
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]),
dtype=global_indicators[i].dtype,
device=global_indicators[i].device
)
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1)
global_embeds = torch.cat(global_embeds, dim=0) # nv k c
global_masks = torch.cat(global_masks, dim=0)
global_indicators = torch.cat(global_indicators, dim=0)
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer)
final_states = outputs[0]
full_memory = []
full_time = []
for i in range(n_seq):
memory = final_states[i][global_indicators[i]==100] # k c
time = final_states[i][global_indicators[i]==200]
full_memory.append(memory)
full_time.append(time)
global_memory = final_states[n_seq][global_indicators[n_seq]==150] # nseq c
full_memory = torch.stack(full_memory, dim=0) # nv k c
select_memory = full_memory[-4:] # 4 k c
select_clip = clip_embeds[-4:]
select_memory = select_memory.unsqueeze(0) # 1 4 k c
select_clip = select_clip.unsqueeze(0)
global_memory = global_memory.unsqueeze(0) # 1 nseq c
return select_memory, select_clip, global_memory, 0, 0
elif self.training and False: # caption and grounding
block_size = 1
n_seq = inputs_embeds.shape[0]
global_embeds = []
global_masks = []
global_indicators = []
global_embeds.append(inputs_embeds)
global_masks.append(attention_mask)
global_indicators.append(indicators)
with torch.no_grad():
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer)
hidden_states = outputs[0]
clip_memory = hidden_states[indicators==100] # nseq*k c
full_time = hidden_states[indicators==200] # nseq c
with torch.no_grad():
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0)
memory_mask = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator[:, -full_time.shape[0]:] = 150
global_embeds.append(memory_embeds)
global_indicators.append(memory_indicator)
global_masks.append(memory_mask)
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer)
hidden_states = outputs[0]
global_memory = hidden_states[0, -full_time.shape[0]:] # nseq c
n_qs = qs_embeds.shape[0]
new_embeds = []
new_masks = []
new_indicators = []
for batch_idx in range(qs_embeds.shape[0]):
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) # n+k c
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0)
indicator = torch.zeros_like(new_mask)
indicator[torch.where(new_mask==1)[0][-1]] = 1
new_masks.append(new_mask)
new_indicators.append(indicator)
current_embeds = torch.stack(new_embeds, dim=0)
current_mask = torch.stack(new_masks, dim=0)
current_indicators = torch.stack(new_indicators, dim=0)
global_embeds.append(current_embeds)
global_masks.append(current_mask)
global_indicators.append(current_indicators)
max_len = max(x.shape[1] for x in global_embeds)
for i in range(len(global_embeds)):
embed_padded = torch.zeros(
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]),
dtype=global_embeds[i].dtype,
device=global_embeds[i].device
)
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1)
mask_padded = torch.zeros(
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]),
dtype=global_masks[i].dtype,
device=global_masks[i].device
)
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1)
indicator_padded = torch.zeros(
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]),
dtype=global_indicators[i].dtype,
device=global_indicators[i].device
)
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1)
global_embeds = torch.cat(global_embeds, dim=0) # nv+1+nq k c
global_masks = torch.cat(global_masks, dim=0)
global_indicators = torch.cat(global_indicators, dim=0)
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer)
final_states = outputs[0]
full_memory = []
full_time = []
full_qs = []
for i in range(n_seq):
memory = final_states[i][global_indicators[i]==100] # k c
time = final_states[i][global_indicators[i]==200]
full_memory.append(memory)
full_time.append(time)
global_memory = final_states[n_seq][global_indicators[n_seq]==150] # nseq c
for i in range(n_qs):
qs_token = final_states[i+n_seq+1][global_indicators[i+n_seq+1]==1]
full_qs.append(qs_token)
full_memory = torch.stack(full_memory, dim=0) # nv k c
full_time = torch.cat(full_time, dim=0) # nv c
full_qs = torch.cat(full_qs, dim=0) # nq c
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2)
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2)
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) # q n
similarity = torch.softmax(similarity/0.1, dim=-1)
loss = - torch.sum(time_labels*torch.log(similarity+1e-4), dim=-1).mean() - 0.01*torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean() if time_labels is not None else 0*(-torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean())
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] # q k
select_index = select_index.sort(dim=-1)[0]
# print(similarity, time_labels, select_index, loss)
select_memory = full_memory[-4:] # 4 k c
select_clip = clip_embeds[-4:]
select_memory = select_memory.unsqueeze(0) # 1 4 k c
select_clip = select_clip.unsqueeze(0)
global_memory = global_memory.unsqueeze(0)
return select_memory, select_clip, global_memory, loss, similarity
elif self.training and True: # video qa only train llm
block_size = 1
n_seq = inputs_embeds.shape[0]
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer)
hidden_states = outputs[0]
clip_memory = hidden_states[indicators==100] # nseq*k c
full_memory = clip_memory.view(n_seq, -1, hidden_states.shape[-1]) # nseq k c
full_time = hidden_states[indicators==200].view(n_seq, hidden_states.shape[-1]) # nseq c
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0)
memory_mask = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator = torch.ones_like(memory_embeds[:, :, 0])
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer)
hidden_states = outputs[0]
global_memory = hidden_states[0, -full_time.shape[0]:] # nseq c
n_qs = qs_embeds.shape[0]
new_embeds = []
new_masks = []
new_indicators = []
for batch_idx in range(qs_embeds.shape[0]):
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) # n+k c
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0)
indicator = torch.zeros_like(new_mask)
indicator[torch.where(new_mask==1)[0][-1]] = 1
new_masks.append(new_mask)
new_indicators.append(indicator)
current_embeds = torch.stack(new_embeds, dim=0)
current_mask = torch.stack(new_masks, dim=0)
current_indicators = torch.stack(new_indicators, dim=0)
outputs = self.model(input_ids, inputs_embeds=current_embeds, attention_mask=current_mask, indicators=current_indicators, select_layer=select_layer)
current_states = outputs[0]
full_qs = current_states[current_indicators==1] # q c
# print(full_memory.shape, full_time.shape, full_qs.shape)
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2)
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2)
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) # q n
similarity = torch.softmax(similarity/0.1, dim=-1)
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] # q k
select_index = select_index.sort(dim=-1)[0]
select_memory = []
select_clip = []
for batch_idx in range(n_qs):
memory = full_memory[select_index[batch_idx]] # k k c
clip = clip_embeds[select_index[batch_idx]]
select_clip.append(clip)
select_memory.append(memory)
select_memory = torch.stack(select_memory, dim=0) # q k n c
select_clip = torch.stack(select_clip, dim=0)
global_memory = global_memory.unsqueeze(0).repeat([n_qs, 1, 1])
return select_memory, select_clip, global_memory, 0, similarity
else: # inference
block_size = 1
n_seq = inputs_embeds.shape[0]
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer)
hidden_states = outputs[0]
clip_memory = hidden_states[indicators==100] # nseq*k c
full_memory = clip_memory.view(n_seq, -1, hidden_states.shape[-1]) # nseq k c
full_time = hidden_states[indicators==200].view(n_seq, hidden_states.shape[-1]) # nseq c
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0)
memory_mask = torch.ones_like(memory_embeds[:, :, 0])
memory_indicator = torch.ones_like(memory_embeds[:, :, 0])
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer)
hidden_states = outputs[0]
global_memory = hidden_states[0, -full_time.shape[0]:] # nseq c
n_qs = qs_embeds.shape[0]
new_embeds = []
new_masks = []
new_indicators = []
for batch_idx in range(qs_embeds.shape[0]):
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) # n+k c
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0)
indicator = torch.zeros_like(new_mask)
indicator[torch.where(new_mask==1)[0][-1]] = 1
new_masks.append(new_mask)
new_indicators.append(indicator)
current_embeds = torch.stack(new_embeds, dim=0)
current_mask = torch.stack(new_masks, dim=0)
current_indicators = torch.stack(new_indicators, dim=0)
outputs = self.model(input_ids, inputs_embeds=current_embeds, attention_mask=current_mask, indicators=current_indicators, select_layer=select_layer)
current_states = outputs[0]
full_qs = current_states[current_indicators==1] # q c
# print(full_memory.shape, full_time.shape, full_qs.shape)
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2)
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2)
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) # q n
similarity = torch.softmax(similarity/0.1, dim=-1)
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] # q k
select_index = select_index.sort(dim=-1)[0]
select_memory = []
select_clip = []
for batch_idx in range(n_qs):
memory = full_memory[select_index[batch_idx]] # k k c
clip = clip_embeds[select_index[batch_idx]]
select_clip.append(clip)
select_memory.append(memory)
select_memory = torch.stack(select_memory, dim=0) # q k n c
select_clip = torch.stack(select_clip, dim=0)
global_memory = global_memory.unsqueeze(0).repeat([n_qs, 1, 1])
return select_memory, select_clip, global_memory, 0, similarity
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
indicators: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
indicators=indicators,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
@add_start_docstrings(
"""
The Qwen2 Model transformer with a sequence classification head on top (linear layer).
[`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
QWEN2_START_DOCSTRING,
)
class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Qwen2Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
QWEN2_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2, LLAMA->QWEN2
class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Qwen2Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)