|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Qwen2 model.""" |
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from configuration_qwen import Qwen2Config |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" |
|
_CONFIG_FOR_DOC = "Qwen2Config" |
|
|
|
|
|
|
|
class Qwen2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Qwen2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Qwen2Attention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = Qwen2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Qwen2FlashAttention2(Qwen2Attention): |
|
""" |
|
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` |
|
as the weights of the module stays untouched. The only required change would be on the forward pass |
|
where it needs to correctly call the public API of flash attention and deal with padding tokens |
|
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom |
|
config.max_window_layers layers. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
): |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 |
|
if ( |
|
getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
and cache_has_contents |
|
): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[self.layer_idx][0] |
|
past_value = past_key_value[self.layer_idx][1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" |
|
f" {past_key.shape}" |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if ( |
|
self.config.use_sliding_window |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and self.layer_idx >= self.config.max_window_layers |
|
): |
|
sliding_window = self.config.sliding_window |
|
else: |
|
sliding_window = None |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
position_ids=position_ids, |
|
dropout=dropout_rate, |
|
sliding_window=sliding_window, |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class Qwen2SdpaAttention(Qwen2Attention): |
|
""" |
|
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
QWEN2_ATTENTION_CLASSES = { |
|
"eager": Qwen2Attention, |
|
"flash_attention_2": Qwen2FlashAttention2, |
|
"sdpa": Qwen2SdpaAttention, |
|
} |
|
|
|
|
|
class Qwen2DecoderLayer(nn.Module): |
|
def __init__(self, config: Qwen2Config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
if config.sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
indicators=indicators, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
QWEN2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Qwen2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2PreTrainedModel(PreTrainedModel): |
|
config_class = Qwen2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Qwen2DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
QWEN2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2Model(Qwen2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] |
|
|
|
Args: |
|
config: Qwen2Config |
|
""" |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
use_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, Cache) and not self.training: |
|
use_legacy_cache = True |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " |
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for i, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
indicators, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
indicators=indicators, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if select_layer is not None: |
|
if i == select_layer: |
|
break |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
if attention_mask.max() != 0: |
|
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") |
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
class Qwen2ForCausalLM(Qwen2PreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Qwen2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward_grounding_hm( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
clip_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
qs_embeds: Optional[torch.FloatTensor] = None, |
|
qs_mask: Optional[torch.BoolTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
return_simi: Optional[bool] = False, |
|
select_layer: Optional[int] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
block_size = 1 |
|
n_seq = inputs_embeds.shape[0] |
|
|
|
global_embeds = [] |
|
global_masks = [] |
|
global_indicators = [] |
|
global_embeds.append(inputs_embeds) |
|
global_masks.append(attention_mask) |
|
global_indicators.append(indicators) |
|
with torch.no_grad(): |
|
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
clip_memory = hidden_states[indicators==100] |
|
full_time = hidden_states[indicators==200] |
|
with torch.no_grad(): |
|
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0) |
|
memory_mask = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator = torch.ones_like(memory_embeds[:, :, 0]) |
|
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
global_memory = hidden_states[0, -full_time.shape[0]:] |
|
|
|
n_qs = qs_embeds.shape[0] |
|
new_embeds = [] |
|
new_masks = [] |
|
new_indicators = [] |
|
for batch_idx in range(qs_embeds.shape[0]): |
|
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) |
|
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0) |
|
indicator = torch.zeros_like(new_mask) |
|
indicator[torch.where(new_mask==1)[0][-1]] = 1 |
|
new_masks.append(new_mask) |
|
new_indicators.append(indicator) |
|
current_embeds = torch.stack(new_embeds, dim=0) |
|
current_mask = torch.stack(new_masks, dim=0) |
|
current_indicators = torch.stack(new_indicators, dim=0) |
|
global_embeds.append(current_embeds) |
|
global_masks.append(current_mask) |
|
global_indicators.append(current_indicators) |
|
|
|
max_len = max(x.shape[1] for x in global_embeds) |
|
for i in range(len(global_embeds)): |
|
embed_padded = torch.zeros( |
|
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]), |
|
dtype=global_embeds[i].dtype, |
|
device=global_embeds[i].device |
|
) |
|
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1) |
|
mask_padded = torch.zeros( |
|
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]), |
|
dtype=global_masks[i].dtype, |
|
device=global_masks[i].device |
|
) |
|
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1) |
|
indicator_padded = torch.zeros( |
|
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]), |
|
dtype=global_indicators[i].dtype, |
|
device=global_indicators[i].device |
|
) |
|
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1) |
|
global_embeds = torch.cat(global_embeds, dim=0) |
|
global_masks = torch.cat(global_masks, dim=0) |
|
global_indicators = torch.cat(global_indicators, dim=0) |
|
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer) |
|
final_states = outputs[0] |
|
|
|
full_time = [] |
|
full_qs = [] |
|
for i in range(n_seq): |
|
time = final_states[i][global_indicators[i]==200] |
|
full_time.append(time) |
|
for i in range(n_qs): |
|
qs_token = final_states[i+n_seq][global_indicators[i+n_seq]==1] |
|
full_qs.append(qs_token) |
|
full_time = torch.cat(full_time, dim=0) |
|
full_qs = torch.cat(full_qs, dim=0) |
|
|
|
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2) |
|
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2) |
|
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) |
|
if return_simi: |
|
return 0.0, similarity, global_memory, clip_memory |
|
similarity = torch.softmax(similarity/0.1, dim=-1) |
|
loss = - torch.sum(time_labels*torch.log(similarity+1e-4), dim=-1).mean() - 0.01*torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean() if time_labels is not None else 0*(-torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean()) |
|
|
|
return loss, similarity, global_memory, clip_memory |
|
|
|
def forward_token( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
clip_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
qs_embeds: Optional[torch.FloatTensor] = None, |
|
qs_mask: Optional[torch.BoolTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
|
|
if self.training and qs_embeds is None: |
|
block_size = 1 |
|
n_seq = inputs_embeds.shape[0] |
|
global_embeds = [] |
|
global_masks = [] |
|
global_indicators = [] |
|
global_embeds.append(inputs_embeds) |
|
global_masks.append(attention_mask) |
|
global_indicators.append(indicators) |
|
with torch.no_grad(): |
|
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
clip_memory = hidden_states[indicators==100] |
|
full_time = hidden_states[indicators==200] |
|
with torch.no_grad(): |
|
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0) |
|
memory_mask = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator[:, -full_time.shape[0]:] = 150 |
|
global_embeds.append(memory_embeds) |
|
global_indicators.append(memory_indicator) |
|
global_masks.append(memory_mask) |
|
|
|
max_len = max(x.shape[1] for x in global_embeds) |
|
for i in range(len(global_embeds)): |
|
embed_padded = torch.zeros( |
|
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]), |
|
dtype=global_embeds[i].dtype, |
|
device=global_embeds[i].device |
|
) |
|
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1) |
|
mask_padded = torch.zeros( |
|
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]), |
|
dtype=global_masks[i].dtype, |
|
device=global_masks[i].device |
|
) |
|
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1) |
|
indicator_padded = torch.zeros( |
|
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]), |
|
dtype=global_indicators[i].dtype, |
|
device=global_indicators[i].device |
|
) |
|
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1) |
|
global_embeds = torch.cat(global_embeds, dim=0) |
|
global_masks = torch.cat(global_masks, dim=0) |
|
global_indicators = torch.cat(global_indicators, dim=0) |
|
|
|
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer) |
|
final_states = outputs[0] |
|
full_memory = [] |
|
full_time = [] |
|
for i in range(n_seq): |
|
memory = final_states[i][global_indicators[i]==100] |
|
time = final_states[i][global_indicators[i]==200] |
|
full_memory.append(memory) |
|
full_time.append(time) |
|
global_memory = final_states[n_seq][global_indicators[n_seq]==150] |
|
full_memory = torch.stack(full_memory, dim=0) |
|
select_memory = full_memory[-4:] |
|
select_clip = clip_embeds[-4:] |
|
select_memory = select_memory.unsqueeze(0) |
|
select_clip = select_clip.unsqueeze(0) |
|
global_memory = global_memory.unsqueeze(0) |
|
return select_memory, select_clip, global_memory, 0, 0 |
|
elif self.training and False: |
|
block_size = 1 |
|
n_seq = inputs_embeds.shape[0] |
|
global_embeds = [] |
|
global_masks = [] |
|
global_indicators = [] |
|
global_embeds.append(inputs_embeds) |
|
global_masks.append(attention_mask) |
|
global_indicators.append(indicators) |
|
with torch.no_grad(): |
|
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
clip_memory = hidden_states[indicators==100] |
|
full_time = hidden_states[indicators==200] |
|
with torch.no_grad(): |
|
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0) |
|
memory_mask = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator[:, -full_time.shape[0]:] = 150 |
|
global_embeds.append(memory_embeds) |
|
global_indicators.append(memory_indicator) |
|
global_masks.append(memory_mask) |
|
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
global_memory = hidden_states[0, -full_time.shape[0]:] |
|
|
|
n_qs = qs_embeds.shape[0] |
|
new_embeds = [] |
|
new_masks = [] |
|
new_indicators = [] |
|
for batch_idx in range(qs_embeds.shape[0]): |
|
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) |
|
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0) |
|
indicator = torch.zeros_like(new_mask) |
|
indicator[torch.where(new_mask==1)[0][-1]] = 1 |
|
new_masks.append(new_mask) |
|
new_indicators.append(indicator) |
|
current_embeds = torch.stack(new_embeds, dim=0) |
|
current_mask = torch.stack(new_masks, dim=0) |
|
current_indicators = torch.stack(new_indicators, dim=0) |
|
global_embeds.append(current_embeds) |
|
global_masks.append(current_mask) |
|
global_indicators.append(current_indicators) |
|
max_len = max(x.shape[1] for x in global_embeds) |
|
for i in range(len(global_embeds)): |
|
embed_padded = torch.zeros( |
|
(global_embeds[i].shape[0], max_len-global_embeds[i].shape[1], global_embeds[i].shape[-1]), |
|
dtype=global_embeds[i].dtype, |
|
device=global_embeds[i].device |
|
) |
|
global_embeds[i] = torch.cat([global_embeds[i], embed_padded], dim=1) |
|
mask_padded = torch.zeros( |
|
(global_masks[i].shape[0], max_len-global_masks[i].shape[1]), |
|
dtype=global_masks[i].dtype, |
|
device=global_masks[i].device |
|
) |
|
global_masks[i] = torch.cat([global_masks[i], mask_padded], dim=1) |
|
indicator_padded = torch.zeros( |
|
(global_indicators[i].shape[0], max_len-global_indicators[i].shape[1]), |
|
dtype=global_indicators[i].dtype, |
|
device=global_indicators[i].device |
|
) |
|
global_indicators[i] = torch.cat([global_indicators[i], indicator_padded], dim=1) |
|
global_embeds = torch.cat(global_embeds, dim=0) |
|
global_masks = torch.cat(global_masks, dim=0) |
|
global_indicators = torch.cat(global_indicators, dim=0) |
|
outputs = self.model(input_ids, inputs_embeds=global_embeds, attention_mask=global_masks, indicators=global_indicators, select_layer=select_layer) |
|
final_states = outputs[0] |
|
full_memory = [] |
|
full_time = [] |
|
full_qs = [] |
|
for i in range(n_seq): |
|
memory = final_states[i][global_indicators[i]==100] |
|
time = final_states[i][global_indicators[i]==200] |
|
full_memory.append(memory) |
|
full_time.append(time) |
|
global_memory = final_states[n_seq][global_indicators[n_seq]==150] |
|
for i in range(n_qs): |
|
qs_token = final_states[i+n_seq+1][global_indicators[i+n_seq+1]==1] |
|
full_qs.append(qs_token) |
|
full_memory = torch.stack(full_memory, dim=0) |
|
full_time = torch.cat(full_time, dim=0) |
|
full_qs = torch.cat(full_qs, dim=0) |
|
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2) |
|
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2) |
|
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) |
|
similarity = torch.softmax(similarity/0.1, dim=-1) |
|
loss = - torch.sum(time_labels*torch.log(similarity+1e-4), dim=-1).mean() - 0.01*torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean() if time_labels is not None else 0*(-torch.sum(similarity*torch.log(similarity+1e-4), dim=-1).mean()) |
|
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] |
|
select_index = select_index.sort(dim=-1)[0] |
|
|
|
select_memory = full_memory[-4:] |
|
select_clip = clip_embeds[-4:] |
|
select_memory = select_memory.unsqueeze(0) |
|
select_clip = select_clip.unsqueeze(0) |
|
global_memory = global_memory.unsqueeze(0) |
|
return select_memory, select_clip, global_memory, loss, similarity |
|
elif self.training and True: |
|
block_size = 1 |
|
n_seq = inputs_embeds.shape[0] |
|
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
clip_memory = hidden_states[indicators==100] |
|
full_memory = clip_memory.view(n_seq, -1, hidden_states.shape[-1]) |
|
full_time = hidden_states[indicators==200].view(n_seq, hidden_states.shape[-1]) |
|
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0) |
|
memory_mask = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator = torch.ones_like(memory_embeds[:, :, 0]) |
|
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
global_memory = hidden_states[0, -full_time.shape[0]:] |
|
|
|
n_qs = qs_embeds.shape[0] |
|
new_embeds = [] |
|
new_masks = [] |
|
new_indicators = [] |
|
for batch_idx in range(qs_embeds.shape[0]): |
|
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) |
|
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0) |
|
indicator = torch.zeros_like(new_mask) |
|
indicator[torch.where(new_mask==1)[0][-1]] = 1 |
|
new_masks.append(new_mask) |
|
new_indicators.append(indicator) |
|
current_embeds = torch.stack(new_embeds, dim=0) |
|
current_mask = torch.stack(new_masks, dim=0) |
|
current_indicators = torch.stack(new_indicators, dim=0) |
|
outputs = self.model(input_ids, inputs_embeds=current_embeds, attention_mask=current_mask, indicators=current_indicators, select_layer=select_layer) |
|
current_states = outputs[0] |
|
full_qs = current_states[current_indicators==1] |
|
|
|
|
|
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2) |
|
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2) |
|
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) |
|
similarity = torch.softmax(similarity/0.1, dim=-1) |
|
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] |
|
select_index = select_index.sort(dim=-1)[0] |
|
select_memory = [] |
|
select_clip = [] |
|
for batch_idx in range(n_qs): |
|
memory = full_memory[select_index[batch_idx]] |
|
clip = clip_embeds[select_index[batch_idx]] |
|
select_clip.append(clip) |
|
select_memory.append(memory) |
|
select_memory = torch.stack(select_memory, dim=0) |
|
select_clip = torch.stack(select_clip, dim=0) |
|
global_memory = global_memory.unsqueeze(0).repeat([n_qs, 1, 1]) |
|
return select_memory, select_clip, global_memory, 0, similarity |
|
else: |
|
block_size = 1 |
|
n_seq = inputs_embeds.shape[0] |
|
outputs = self.model(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, indicators=indicators, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
clip_memory = hidden_states[indicators==100] |
|
full_memory = clip_memory.view(n_seq, -1, hidden_states.shape[-1]) |
|
full_time = hidden_states[indicators==200].view(n_seq, hidden_states.shape[-1]) |
|
memory_embeds = torch.cat([clip_memory, full_time], dim=0).unsqueeze(0) |
|
memory_mask = torch.ones_like(memory_embeds[:, :, 0]) |
|
memory_indicator = torch.ones_like(memory_embeds[:, :, 0]) |
|
outputs = self.model(input_ids, inputs_embeds=memory_embeds, attention_mask=memory_mask, indicators=memory_indicator, select_layer=select_layer) |
|
hidden_states = outputs[0] |
|
global_memory = hidden_states[0, -full_time.shape[0]:] |
|
|
|
n_qs = qs_embeds.shape[0] |
|
new_embeds = [] |
|
new_masks = [] |
|
new_indicators = [] |
|
for batch_idx in range(qs_embeds.shape[0]): |
|
new_embeds.append(torch.cat([global_memory, qs_embeds[batch_idx]], dim=0)) |
|
new_mask = torch.cat([torch.ones(global_memory.shape[0], dtype=qs_mask.dtype, device=qs_mask.device), qs_mask[batch_idx]], dim=0) |
|
indicator = torch.zeros_like(new_mask) |
|
indicator[torch.where(new_mask==1)[0][-1]] = 1 |
|
new_masks.append(new_mask) |
|
new_indicators.append(indicator) |
|
current_embeds = torch.stack(new_embeds, dim=0) |
|
current_mask = torch.stack(new_masks, dim=0) |
|
current_indicators = torch.stack(new_indicators, dim=0) |
|
outputs = self.model(input_ids, inputs_embeds=current_embeds, attention_mask=current_mask, indicators=current_indicators, select_layer=select_layer) |
|
current_states = outputs[0] |
|
full_qs = current_states[current_indicators==1] |
|
|
|
|
|
full_time = torch.nn.functional.normalize(full_time, dim=1, p=2) |
|
full_qs = torch.nn.functional.normalize(full_qs, dim=1, p=2) |
|
similarity = torch.einsum('qc,nc->qn', full_qs, full_time) |
|
similarity = torch.softmax(similarity/0.1, dim=-1) |
|
select_index = torch.topk(similarity, dim=-1, k=min(4, full_time.shape[0]))[1] |
|
select_index = select_index.sort(dim=-1)[0] |
|
select_memory = [] |
|
select_clip = [] |
|
for batch_idx in range(n_qs): |
|
memory = full_memory[select_index[batch_idx]] |
|
clip = clip_embeds[select_index[batch_idx]] |
|
select_clip.append(clip) |
|
select_memory.append(memory) |
|
select_memory = torch.stack(select_memory, dim=0) |
|
select_clip = torch.stack(select_clip, dim=0) |
|
global_memory = global_memory.unsqueeze(0).repeat([n_qs, 1, 1]) |
|
return select_memory, select_clip, global_memory, 0, similarity |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
indicators: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM |
|
|
|
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
indicators=indicators, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Qwen2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2ForSequenceClassification(Qwen2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Qwen2Model(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states |
|
output) e.g. for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
|
|
class Qwen2ForTokenClassification(Qwen2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Qwen2Model(config) |
|
if getattr(config, "classifier_dropout", None) is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.score(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|