fast tokenizer and stream_chat fix
#2
by
x54-729
- opened
config.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"InternLM2ForCausalLM"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "
|
7 |
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
|
8 |
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM"
|
9 |
},
|
@@ -15,7 +15,7 @@
|
|
15 |
"initializer_range": 0.02,
|
16 |
"intermediate_size": 14336,
|
17 |
"max_position_embeddings": 32768,
|
18 |
-
"model_type": "
|
19 |
"num_attention_heads": 32,
|
20 |
"num_hidden_layers": 32,
|
21 |
"num_key_value_heads": 8,
|
|
|
3 |
"InternLM2ForCausalLM"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
7 |
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
|
8 |
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM"
|
9 |
},
|
|
|
15 |
"initializer_range": 0.02,
|
16 |
"intermediate_size": 14336,
|
17 |
"max_position_embeddings": 32768,
|
18 |
+
"model_type": "internlm2",
|
19 |
"num_attention_heads": 32,
|
20 |
"num_hidden_layers": 32,
|
21 |
"num_key_value_heads": 8,
|
configuration_internlm.py → configuration_internlm2.py
RENAMED
@@ -1,10 +1,7 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright (c) InternLM. All rights reserved.
|
3 |
#
|
4 |
-
# This code is based on
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
@@ -17,21 +14,22 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""
|
21 |
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
from transformers.utils import logging
|
24 |
|
25 |
logger = logging.get_logger(__name__)
|
26 |
|
27 |
-
|
28 |
|
29 |
|
30 |
-
|
|
|
31 |
r"""
|
32 |
-
This is the configuration class to store the configuration of a [`
|
33 |
-
an
|
34 |
-
configuration with the defaults will yield a similar configuration to that of the
|
35 |
|
36 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
documentation from [`PretrainedConfig`] for more information.
|
@@ -39,8 +37,8 @@ class InternLMConfig(PretrainedConfig):
|
|
39 |
|
40 |
Args:
|
41 |
vocab_size (`int`, *optional*, defaults to 32000):
|
42 |
-
Vocabulary size of the
|
43 |
-
`inputs_ids` passed when calling [`
|
44 |
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
Dimension of the hidden representations.
|
46 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
@@ -73,19 +71,8 @@ class InternLMConfig(PretrainedConfig):
|
|
73 |
Whether to tie weight embeddings
|
74 |
Example:
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
>>> # Initializing a InternLM internlm-7b style configuration
|
80 |
-
>>> configuration = InternLMConfig()
|
81 |
-
|
82 |
-
>>> # Initializing a model from the internlm-7b style configuration
|
83 |
-
>>> model = InternLMModel(configuration)
|
84 |
-
|
85 |
-
>>> # Accessing the model configuration
|
86 |
-
>>> configuration = model.config
|
87 |
-
```"""
|
88 |
-
model_type = "internlm"
|
89 |
_auto_class = "AutoConfig"
|
90 |
|
91 |
def __init__( # pylint: disable=W0102
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
|
|
|
|
|
|
5 |
#
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
|
|
14 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
# See the License for the specific language governing permissions and
|
16 |
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
|
19 |
from transformers.configuration_utils import PretrainedConfig
|
20 |
from transformers.utils import logging
|
21 |
|
22 |
logger = logging.get_logger(__name__)
|
23 |
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
|
26 |
|
27 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
+
class InternLM2Config(PretrainedConfig):
|
29 |
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
31 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
33 |
|
34 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
37 |
|
38 |
Args:
|
39 |
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
Dimension of the hidden representations.
|
44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
|
71 |
Whether to tie weight embeddings
|
72 |
Example:
|
73 |
|
74 |
+
"""
|
75 |
+
model_type = "internlm2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
_auto_class = "AutoConfig"
|
77 |
|
78 |
def __init__( # pylint: disable=W0102
|
modeling_internlm2.py
CHANGED
@@ -45,7 +45,7 @@ try:
|
|
45 |
except: # noqa # pylint: disable=bare-except
|
46 |
BaseStreamer = None
|
47 |
|
48 |
-
from .
|
49 |
|
50 |
logger = logging.get_logger(__name__)
|
51 |
|
@@ -1134,11 +1134,12 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1134 |
return reordered_past
|
1135 |
|
1136 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1137 |
-
|
1138 |
-
|
1139 |
-
prompt += f"""<s><|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1140 |
else:
|
1141 |
-
prompt
|
|
|
|
|
1142 |
for record in history:
|
1143 |
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1144 |
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
@@ -1214,6 +1215,7 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1214 |
self.query = query
|
1215 |
self.history = history
|
1216 |
self.response = ""
|
|
|
1217 |
self.received_inputs = False
|
1218 |
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1219 |
|
@@ -1228,11 +1230,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1228 |
self.received_inputs = True
|
1229 |
return
|
1230 |
|
1231 |
-
|
|
|
1232 |
if token.strip() != "<|im_end|>":
|
1233 |
self.response = self.response + token
|
1234 |
history = self.history + [(self.query, self.response)]
|
1235 |
self.queue.put((self.response, history))
|
|
|
|
|
|
|
1236 |
|
1237 |
def end(self):
|
1238 |
self.queue.put(None)
|
|
|
45 |
except: # noqa # pylint: disable=bare-except
|
46 |
BaseStreamer = None
|
47 |
|
48 |
+
from .configuration_internlm2 import InternLM2Config
|
49 |
|
50 |
logger = logging.get_logger(__name__)
|
51 |
|
|
|
1134 |
return reordered_past
|
1135 |
|
1136 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1137 |
+
if tokenizer.add_bos_token:
|
1138 |
+
prompt = ""
|
|
|
1139 |
else:
|
1140 |
+
prompt = tokenizer.bos_token
|
1141 |
+
if meta_instruction:
|
1142 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1143 |
for record in history:
|
1144 |
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1145 |
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
|
|
1215 |
self.query = query
|
1216 |
self.history = history
|
1217 |
self.response = ""
|
1218 |
+
self.chat = []
|
1219 |
self.received_inputs = False
|
1220 |
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1221 |
|
|
|
1230 |
self.received_inputs = True
|
1231 |
return
|
1232 |
|
1233 |
+
self.cache.extend(value.tolist())
|
1234 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1235 |
if token.strip() != "<|im_end|>":
|
1236 |
self.response = self.response + token
|
1237 |
history = self.history + [(self.query, self.response)]
|
1238 |
self.queue.put((self.response, history))
|
1239 |
+
self.cache = []
|
1240 |
+
else:
|
1241 |
+
self.end()
|
1242 |
|
1243 |
def end(self):
|
1244 |
self.queue.put(None)
|
tokenization_internlm.py → tokenization_internlm2.py
RENAMED
@@ -1,10 +1,7 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright (c) InternLM. All rights reserved.
|
3 |
#
|
4 |
-
# This code is based on
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
@@ -18,7 +15,7 @@
|
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
|
21 |
-
"""Tokenization classes for
|
22 |
import os
|
23 |
from shutil import copyfile
|
24 |
from typing import Any, Dict, List, Optional, Tuple
|
@@ -34,9 +31,10 @@ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
|
34 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
35 |
|
36 |
|
37 |
-
|
|
|
38 |
"""
|
39 |
-
Construct a
|
40 |
|
41 |
Args:
|
42 |
vocab_file (`str`):
|
@@ -79,8 +77,6 @@ class InternLMTokenizer(PreTrainedTokenizer):
|
|
79 |
**kwargs,
|
80 |
)
|
81 |
|
82 |
-
""" Initialization"""
|
83 |
-
|
84 |
@property
|
85 |
def no_prefix_space_tokens(self):
|
86 |
if self._no_prefix_space_tokens is None:
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
|
|
|
|
|
|
5 |
#
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
# See the License for the specific language governing permissions and
|
16 |
# limitations under the License.
|
17 |
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
import os
|
20 |
from shutil import copyfile
|
21 |
from typing import Any, Dict, List, Optional, Tuple
|
|
|
31 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
|
33 |
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
|
39 |
Args:
|
40 |
vocab_file (`str`):
|
|
|
77 |
**kwargs,
|
78 |
)
|
79 |
|
|
|
|
|
80 |
@property
|
81 |
def no_prefix_space_tokens(self):
|
82 |
if self._no_prefix_space_tokens is None:
|
tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization Fast class for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, Optional, Tuple
|
22 |
+
|
23 |
+
from tokenizers import processors, decoders, Tokenizer, normalizers
|
24 |
+
from tokenizers.models import BPE
|
25 |
+
|
26 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
from transformers.convert_slow_tokenizer import (
|
30 |
+
SLOW_TO_FAST_CONVERTERS,
|
31 |
+
SpmConverter,
|
32 |
+
SentencePieceExtractor,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
40 |
+
|
41 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
42 |
+
class InternLM2Converter(SpmConverter):
|
43 |
+
handle_byte_fallback = True
|
44 |
+
|
45 |
+
def vocab(self, proto):
|
46 |
+
vocab = [
|
47 |
+
("<unk>", 0.0),
|
48 |
+
("<s>", 0.0),
|
49 |
+
("</s>", 0.0),
|
50 |
+
]
|
51 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
52 |
+
return vocab
|
53 |
+
|
54 |
+
def unk_id(self, proto):
|
55 |
+
unk_id = 0
|
56 |
+
return unk_id
|
57 |
+
|
58 |
+
def decoder(self, replacement, add_prefix_space):
|
59 |
+
return decoders.Sequence(
|
60 |
+
[
|
61 |
+
decoders.Replace("▁", " "),
|
62 |
+
decoders.ByteFallback(),
|
63 |
+
decoders.Fuse(),
|
64 |
+
decoders.Strip(content=" ", left=1),
|
65 |
+
]
|
66 |
+
)
|
67 |
+
|
68 |
+
def tokenizer(self, proto):
|
69 |
+
model_type = proto.trainer_spec.model_type
|
70 |
+
vocab_scores = self.vocab(proto)
|
71 |
+
# special tokens
|
72 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
73 |
+
for i in range(len(vocab_scores)):
|
74 |
+
piece, score = vocab_scores[i]
|
75 |
+
if i in added_tokens:
|
76 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
77 |
+
if model_type == 1:
|
78 |
+
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
79 |
+
|
80 |
+
elif model_type == 2:
|
81 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
82 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
83 |
+
tokenizer = Tokenizer(
|
84 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
85 |
+
)
|
86 |
+
tokenizer.add_special_tokens(
|
87 |
+
[ added_token for index, added_token in added_tokens.items()]
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
raise Exception(
|
91 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
92 |
+
)
|
93 |
+
|
94 |
+
return tokenizer
|
95 |
+
|
96 |
+
def normalizer(self, proto):
|
97 |
+
normalizers_list = []
|
98 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
99 |
+
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
100 |
+
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
101 |
+
return normalizers.Sequence(normalizers_list)
|
102 |
+
|
103 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
104 |
+
return None
|
105 |
+
|
106 |
+
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
107 |
+
|
108 |
+
|
109 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
110 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
111 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
112 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
113 |
+
padding_side = "left"
|
114 |
+
model_input_names = ["input_ids", "attention_mask"]
|
115 |
+
_auto_class = "AutoTokenizer"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_file,
|
120 |
+
unk_token="<unk>",
|
121 |
+
bos_token="<s>",
|
122 |
+
eos_token="</s>",
|
123 |
+
pad_token="</s>",
|
124 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
125 |
+
add_bos_token=True,
|
126 |
+
add_eos_token=False,
|
127 |
+
decode_with_prefix_space=False,
|
128 |
+
clean_up_tokenization_spaces=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
super().__init__(
|
132 |
+
vocab_file=vocab_file,
|
133 |
+
unk_token=unk_token,
|
134 |
+
bos_token=bos_token,
|
135 |
+
eos_token=eos_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
sp_model_kwargs=sp_model_kwargs,
|
138 |
+
add_bos_token=add_bos_token,
|
139 |
+
add_eos_token=add_eos_token,
|
140 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
141 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
self._add_bos_token = add_bos_token
|
145 |
+
self._add_eos_token = add_eos_token
|
146 |
+
self.update_post_processor()
|
147 |
+
self.vocab_file = vocab_file
|
148 |
+
|
149 |
+
@property
|
150 |
+
def can_save_slow_tokenizer(self) -> bool:
|
151 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
152 |
+
|
153 |
+
def update_post_processor(self):
|
154 |
+
"""
|
155 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
156 |
+
"""
|
157 |
+
bos = self.bos_token
|
158 |
+
bos_token_id = self.bos_token_id
|
159 |
+
if bos is None and self.add_bos_token:
|
160 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
161 |
+
|
162 |
+
eos = self.eos_token
|
163 |
+
eos_token_id = self.eos_token_id
|
164 |
+
if eos is None and self.add_eos_token:
|
165 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
166 |
+
|
167 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
168 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
169 |
+
|
170 |
+
special_tokens = []
|
171 |
+
if self.add_bos_token:
|
172 |
+
special_tokens.append((bos, bos_token_id))
|
173 |
+
if self.add_eos_token:
|
174 |
+
special_tokens.append((eos, eos_token_id))
|
175 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
176 |
+
single=single, pair=pair, special_tokens=special_tokens
|
177 |
+
)
|
178 |
+
|
179 |
+
@property
|
180 |
+
def add_eos_token(self):
|
181 |
+
return self._add_eos_token
|
182 |
+
|
183 |
+
@property
|
184 |
+
def add_bos_token(self):
|
185 |
+
return self._add_bos_token
|
186 |
+
|
187 |
+
@add_eos_token.setter
|
188 |
+
def add_eos_token(self, value):
|
189 |
+
self._add_eos_token = value
|
190 |
+
self.update_post_processor()
|
191 |
+
|
192 |
+
@add_bos_token.setter
|
193 |
+
def add_bos_token(self, value):
|
194 |
+
self._add_bos_token = value
|
195 |
+
self.update_post_processor()
|
196 |
+
|
197 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
198 |
+
if not self.can_save_slow_tokenizer:
|
199 |
+
raise ValueError(
|
200 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
201 |
+
"tokenizer."
|
202 |
+
)
|
203 |
+
|
204 |
+
if not os.path.isdir(save_directory):
|
205 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
206 |
+
return
|
207 |
+
out_vocab_file = os.path.join(
|
208 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
209 |
+
)
|
210 |
+
|
211 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
212 |
+
copyfile(self.vocab_file, out_vocab_file)
|
213 |
+
|
214 |
+
return (out_vocab_file,)
|
tokenizer_config.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
"AutoTokenizer": [
|
4 |
-
"
|
5 |
-
|
6 |
]
|
7 |
},
|
8 |
"bos_token": "<s>",
|
@@ -10,6 +10,6 @@
|
|
10 |
"eos_token": "</s>",
|
11 |
"model_max_length": 1000000000000000019884624838656,
|
12 |
"pad_token": "</s>",
|
13 |
-
"tokenizer_class": "
|
14 |
"unk_token": "<unk>"
|
15 |
-
}
|
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
"AutoTokenizer": [
|
4 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
5 |
+
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
6 |
]
|
7 |
},
|
8 |
"bos_token": "<s>",
|
|
|
10 |
"eos_token": "</s>",
|
11 |
"model_max_length": 1000000000000000019884624838656,
|
12 |
"pad_token": "</s>",
|
13 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
14 |
"unk_token": "<unk>"
|
15 |
+
}
|