create handler.py
#8
by
hansihe
- opened
- handler.py +29 -0
handler.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import Tensor
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
|
8 |
+
def average_pool(last_hidden_states: Tensor,
|
9 |
+
attention_mask: Tensor) -> Tensor:
|
10 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
11 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
12 |
+
|
13 |
+
class EndpointHandler():
|
14 |
+
def __init__(self, path=""):
|
15 |
+
self.pipeline = pipeline("feature-extraction", model=path)
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
17 |
+
self.model = AutoModel.from_pretrained(path)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> List[List[int]]:
|
20 |
+
inputs = data.pop("inputs",data)
|
21 |
+
|
22 |
+
batch_dict = self.tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
23 |
+
|
24 |
+
outputs = self.model(**batch_dict)
|
25 |
+
|
26 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
27 |
+
embeddings = F.normalize(embeddings, p=2, dim=1).tolist()
|
28 |
+
|
29 |
+
return embeddings
|