|
--- |
|
pipeline_tag: sentence-similarity |
|
language: |
|
- pl |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- ipipan/polqa |
|
- ipipan/maupqa |
|
--- |
|
|
|
# Silver Retriever Base (v1) |
|
|
|
Silver Retriever model encodes the Polish sentences or paragraphs into a 768-dimensional dense vector space and can be used for tasks like document retrieval or semantic search. |
|
|
|
It was initialized from the [HerBERT-base](https://huggingface.co/allegro/herbert-base-cased) model and fine-tuned on the [PolQA](https://huggingface.co/ipipan/polqa) and [MAUPQA](https://huggingface.co/ipipan/maupqa) datasets for 15,000 steps with a batch size of 1,024. |
|
|
|
## Preparing inputs |
|
|
|
The model was trained on question-passage pairs and works best when the input is the same format as that used during training: |
|
- We added the phrase `Pytanie:' to the beginning of the question. |
|
- The training passages consisted of `title` and `text` concatenated with the special token `</s>`. Even if your passages don't have a `title`, it is still beneficial to prefix a passage with the `</s>` token. |
|
- Although we used the dot product during training, the model usually works better with the cosine distance. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = [ |
|
"Pytanie: W jakim mieście urodził się Zbigniew Herbert?", |
|
"Zbigniew Herbert</s>Zbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.", |
|
] |
|
|
|
model = SentenceTransformer('ipipan/silver-retriever-base-v1') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
def cls_pooling(model_output, attention_mask): |
|
return model_output[0][:,0] |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = [ |
|
"Pytanie: W jakim mieście urodził się Zbigniew Herbert?", |
|
"Zbigniew Herbert</s>Zbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.", |
|
] |
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('ipipan/silver-retriever-base-v1') |
|
model = AutoModel.from_pretrained('ipipan/silver-retriever-base-v1') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, cls pooling. |
|
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Additional Information |
|
|
|
### Model Creators |
|
|
|
The model was created by Piotr Rybak from the [Institute of Computer Science, Polish Academy of Sciences](http://zil.ipipan.waw.pl/). |
|
|
|
This work was supported by the European Regional Development Fund as a part of 2014–2020 Smart Growth Operational Programme, CLARIN — Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00-00C002/19. |
|
|
|
### Licensing Information |
|
|
|
[More Information Needed] |
|
|
|
### Citation Information |
|
|
|
[More Information Needed] |
|
|