t5-small-asqa-ob / README.md
irenepap's picture
Librarian Bot: Add base_model information to model (#2)
cd68758
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets: din0s/asqa
metrics:
  - rouge
base_model: google/t5-small-ssm-nq
model-index:
  - name: t5-small-asqa-ob
    results: []

t5-small-asqa-ob

This model is a fine-tuned version of google/t5-small-ssm-nq on the ASQA dataset without context (closed book). It achieves the following results on the evaluation set:

  • Loss: 2.8099
  • Rouge1: 0.1493
  • Rouge2: 0.0837
  • Rougel: 0.1272
  • Rougelsum: 0.1270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.8208 1.0 710 2.7856 0.1267 0.0644 0.1086 0.1084
3.0532 2.0 1420 2.6247 0.1321 0.0721 0.1145 0.1144
2.5656 3.0 2130 2.5062 0.1399 0.0773 0.1213 0.1213
2.3806 4.0 2840 2.5004 0.1431 0.0805 0.1243 0.1241
2.157 5.0 3550 2.5008 0.1455 0.0808 0.1255 0.1254
2.0458 6.0 4260 2.5313 0.1510 0.0846 0.1303 0.1301
1.914 7.0 4970 2.5298 0.1585 0.0885 0.1361 0.1358
1.7479 8.0 5680 2.5832 0.1508 0.0844 0.1292 0.1291
1.6875 9.0 6390 2.5928 0.1493 0.0834 0.1281 0.1279
1.574 10.0 7100 2.6364 0.1591 0.0885 0.1364 0.1363
1.4554 11.0 7810 2.6978 0.1513 0.0849 0.1295 0.1295
1.3909 12.0 8520 2.8099 0.1493 0.0837 0.1272 0.1270

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu102
  • Datasets 2.5.1
  • Tokenizers 0.12.1