测试用colab笔记,test notebook

不需要自己装环境即可使用!!No environment needed, use colab to test
https://colab.research.google.com/drive/1PA30HPgRooCTV-H9Wr_DZXHqC42PrgTO?usp=sharing
现在翻译能力就是人工吗喽,不是词汇不够,是学不会了
this model has problem learning more due to the 300M size and my poor techniques

模型公开声明

  • 这个模型由 mt5-translation-ja_zh 启发(其实就是在它上面改的),使用mt5-small,整体较小
  • 使用了CCMatrix-v1-Ja_Zh, 1e-4学习率, 7 个epoch, 大概1.7的 val loss,下不去了

Release Notes

  • this model is finetuned from mt5-small, training methods and datasets refers to larryvrh/mt5-translation-ja_zh
  • used a trimmed and fused dataset CCMatrix-v1-Ja_Zh 1e-4 for 7 epoch no weight decay,arraived at about 1.7 val loss, it somehow stalls there

A more precise example using it

使用指南

from transformers import pipeline
model_name="iryneko571/mt5-small-translation-ja_zh"
#pipe = pipeline("translation",model=model_name,tokenizer=model_name,repetition_penalty=1.4,batch_size=1,max_length=256)
pipe = pipeline("translation",
  model=model_name,
  repetition_penalty=1.4,
  batch_size=1,
  max_length=256
  )

def translate_batch(batch, language='<-ja2zh->'): # batch is an array of string
    i=0 # quickly format the list
    while i<len(batch):
        batch[i]=f'{language} {batch[i]}'
        i+=1
    translated=pipe(batch)
    result=[]
    i=0
    while i<len(translated):
        result.append(translated[i]['translation_text'])
        i+=1
    return result

inputs=[]

print(translate_batch(inputs))
Downloads last month
24
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train iryneko571/mt5-small-translation-ja_zh