metadata
license: cc-by-nc-4.0
pipeline_tag: image-segmentation
tags:
- remote sensing
- EMIT
- Hyperspectral
- AVIRIS
- methane
- CH4
STARCOP pre-trained models
This repository contains the trained models of the publication:
V. Růžička, G. Mateo-Garcia, L. Gómez-Chova, A. Vaughan, L. Guanter, and A. Markham. Semantic segmentation of methane plumes with hyperspectral machine learning models. Scientific Reports 13, 19999 (2023). DOI: 10.1038/s41598-023-44918-6.
We include the trained models:
- HyperSTARCOP, only mag1c in folder
models/hyperstarcop_mag1c_only
- HyperSTARCOP, mag1c + rgb in folder
models/hyperstarcop_mag1c_rgb
The following table shows the performance of the models in the AVIRIS test dataset and in the EMIT test dataset:
In order to run any of these models:
- In a EMIT scene see the tutorial Run STARCOP models on raw EMIT data.
If you find this work useful please cite:
@article{ruzicka_starcop_2023,
title = {Semantic segmentation of methane plumes with hyperspectral machine learning models},
volume = {13},
issn = {2045-2322},
url = {https://www.nature.com/articles/s41598-023-44918-6},
doi = {10.1038/s41598-023-44918-6},
number = {1},
journal = {Scientific Reports},
author = {Růžička, Vít and Mateo-Garcia, Gonzalo and Gómez-Chova, Luis and Vaughan, Anna, and Guanter, Luis and Markham, Andrew},
month = nov,
year = {2023},
pages = {19999}
}