gonzmg88's picture
Upload 4 files
515adb7
wandb_version: 1
_content:
desc: null
value:
dataloader: '{''batch_size'': 32, ''num_workers'': 4}'
dataset: '{''input_products'': [''mag1c'', ''TOA_AVIRIS_640nm'', ''TOA_AVIRIS_550nm'',
''TOA_AVIRIS_460nm''], ''output_products'': [''labelbinary''], ''use_weight_loss'':
True, ''weight_loss'': ''weight_mag1c'', ''training_size'': [128, 128], ''training_size_overlap'':
[64, 64], ''weight_sampling'': True, ''root_folder'': ''/Permian/dataset'',
''train_csv'': ''train.csv''}'
experiment_name: f4_hyper_unetsempos1all_all_15ep_R3
experiment_path: gs://starcop/experiments/f4_hyper_unetsempos1all_all_15ep_R3/2022-11-10_19-03/
model: '{''train'': True, ''test'': True, ''model_mode'': ''segmentation_output'',
''model_type'': ''unet_semseg'', ''semseg_backbone'': ''mobilenet_v2'', ''num_classes'':
1, ''optimizer'': ''adam'', ''lr'': 0.0001, ''lr_decay'': 0.5, ''lr_patience'':
4, ''loss'': ''BCEWithLogitsLoss'', ''pos_weight'': 1, ''early_stopping_patience'':
8}'
plot_samples: '8'
products_plot:
- rgb_aviris
- mag1c
- label
- pred
- differences
resume_from_checkpoint: 'False'
seed: None
training: '{''accelerator'': ''gpu'', ''devices'': 1, ''max_epochs'': 15, ''val_check_interval'':
0.5, ''train_log_every_n_steps'': 10}'
wandb: '{''wandb_project'': ''starcop-aviris-seg-vitek'', ''wandb_entity'': ''dtacs'',
''images_logging'': ''wandb''}'
_flags_cache:
desc: null
value:
allow_objects: null
convert: null
readonly: null
struct: false
_metadata:
desc: null
value: 'ContainerMetadata(ref_type=typing.Any, object_type=<class ''dict''>, optional=True,
key=None, flags={''struct'': False}, flags_root=False, resolver_cache=defaultdict(<class
''dict''>, {''now'': {(''%Y-%m-%d'',): ''2022-11-10'', (''%H-%M-%S'',): ''19-03-19'',
(''%Y-%m-%d_%H-%M'',): ''2022-11-10_19-03''}}), key_type=typing.Any, element_type=typing.Any)'
_parent:
desc: null
value: null
_wandb:
desc: null
value:
cli_version: 0.13.3
framework: lightning
is_jupyter_run: false
is_kaggle_kernel: false
m:
- 1: trainer/global_step
6:
- 3
- 1: val_batch._type
5: 1
6:
- 1
- 1: val_batch.sha256
5: 1
6:
- 1
- 1: val_batch.size
5: 1
6:
- 1
- 1: val_batch.path
5: 1
6:
- 1
- 1: val_batch.format
5: 1
6:
- 1
- 1: val_batch.width
5: 1
6:
- 1
- 1: val_batch.height
5: 1
6:
- 1
- 1: train_BCEWithLogitsLoss
5: 1
6:
- 1
- 1: epoch
5: 1
6:
- 1
- 1: val_loss
5: 1
6:
- 1
- 1: val_precision
5: 1
6:
- 1
- 1: val_recall
5: 1
6:
- 1
- 1: val_f1score
5: 1
6:
- 1
- 1: val_iou
5: 1
6:
- 1
- 1: val_accuracy
5: 1
6:
- 1
- 1: val_cohen_kappa
5: 1
6:
- 1
- 1: val_balanced_accuracy
5: 1
6:
- 1
- 1: val_classification_precision
5: 1
6:
- 1
- 1: val_classification_recall
5: 1
6:
- 1
- 1: val_classification_f1score
5: 1
6:
- 1
- 1: val_classification_iou
5: 1
6:
- 1
- 1: val_classification_accuracy
5: 1
6:
- 1
- 1: val_classification_cohen_kappa
5: 1
6:
- 1
- 1: val_classification_balanced_accuracy
5: 1
6:
- 1
- 1: train_batch._type
5: 1
6:
- 1
- 1: train_batch.sha256
5: 1
6:
- 1
- 1: train_batch.size
5: 1
6:
- 1
- 1: train_batch.path
5: 1
6:
- 1
- 1: train_batch.format
5: 1
6:
- 1
- 1: train_batch.width
5: 1
6:
- 1
- 1: train_batch.height
5: 1
6:
- 1
python_version: 3.10.6
start_time: 1668107000.728245
t:
1:
- 1
- 5
- 9
- 41
- 50
- 53
- 55
- 79
2:
- 1
- 5
- 9
- 41
- 50
- 53
- 55
- 63
- 74
- 79
3:
- 7
- 13
- 23
4: 3.10.6
5: 0.13.3
8:
- 5
settings/dataloader/batch_size:
desc: null
value: 32
settings/dataloader/num_workers:
desc: null
value: 4
settings/dataset/input_products:
desc: null
value:
- mag1c
- TOA_AVIRIS_640nm
- TOA_AVIRIS_550nm
- TOA_AVIRIS_460nm
settings/dataset/output_products:
desc: null
value:
- labelbinary
settings/dataset/root_folder:
desc: null
value: /Permian/dataset
settings/dataset/train_csv:
desc: null
value: train.csv
settings/dataset/training_size:
desc: null
value:
- 128
- 128
settings/dataset/training_size_overlap:
desc: null
value:
- 64
- 64
settings/dataset/use_weight_loss:
desc: null
value: true
settings/dataset/weight_loss:
desc: null
value: weight_mag1c
settings/dataset/weight_sampling:
desc: null
value: true
settings/experiment_name:
desc: null
value: f4_hyper_unetsempos1all_all_15ep_R3
settings/experiment_path:
desc: null
value: gs://starcop/experiments/f4_hyper_unetsempos1all_all_15ep_R3/2022-11-10_19-03/
settings/model/early_stopping_patience:
desc: null
value: 8
settings/model/loss:
desc: null
value: BCEWithLogitsLoss
settings/model/lr:
desc: null
value: 0.0001
settings/model/lr_decay:
desc: null
value: 0.5
settings/model/lr_patience:
desc: null
value: 4
settings/model/model_mode:
desc: null
value: segmentation_output
settings/model/model_type:
desc: null
value: unet_semseg
settings/model/num_classes:
desc: null
value: 1
settings/model/optimizer:
desc: null
value: adam
settings/model/pos_weight:
desc: null
value: 1
settings/model/semseg_backbone:
desc: null
value: mobilenet_v2
settings/model/test:
desc: null
value: false
settings/model/train:
desc: null
value: true
settings/plot_samples:
desc: null
value: 8
settings/products_plot:
desc: null
value:
- rgb_aviris
- mag1c
- label
- pred
- differences
settings/resume_from_checkpoint:
desc: null
value: false
settings/seed:
desc: null
value: None
settings/training/accelerator:
desc: null
value: gpu
settings/training/devices:
desc: null
value: 1
settings/training/max_epochs:
desc: null
value: 15
settings/training/train_log_every_n_steps:
desc: null
value: 10
settings/training/val_check_interval:
desc: null
value: 0.5
settings/wandb/images_logging:
desc: null
value: wandb
settings/wandb/wandb_entity:
desc: null
value: dtacs
settings/wandb/wandb_project:
desc: null
value: starcop-aviris-seg-vitek
settings/wandb_logger_version:
desc: null
value: 1envh3p6