herbert-large-cased-topic_classification

This model is a fine-tuned version of allegro/herbert-large-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5731
  • Precision: 0.9195
  • Recall: 0.9014
  • F1: 0.9082
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.3576 0.9119 0.8684 0.8815 0.9020
No log 2.0 88 0.3342 0.9085 0.9027 0.8973 0.9069
No log 3.0 132 0.4985 0.9121 0.8826 0.8916 0.9020
No log 4.0 176 0.6182 0.8998 0.8858 0.8911 0.9020
No log 5.0 220 0.5089 0.9056 0.8880 0.8944 0.9020
No log 6.0 264 0.6806 0.9061 0.8593 0.8766 0.8922
No log 7.0 308 0.5604 0.9127 0.8866 0.8969 0.9069
No log 8.0 352 0.5780 0.9157 0.9036 0.9077 0.9167
No log 9.0 396 0.5733 0.9195 0.9014 0.9082 0.9167
No log 10.0 440 0.5731 0.9195 0.9014 0.9082 0.9167

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for izaitova/herbert-large-cased-topic_classification

Finetuned
(6)
this model