robbert-2023-dutch-large-upos

This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3606
  • Precision: 0.8288
  • Recall: 0.7844
  • F1: 0.7968
  • Accuracy: 0.8898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.6318 0.7041 0.6544 0.6603 0.7663
No log 2.0 876 0.5374 0.7741 0.6827 0.7090 0.8075
No log 3.0 1314 0.4318 0.8544 0.7431 0.7527 0.8595
No log 4.0 1752 0.4009 0.8254 0.7677 0.7796 0.8771
No log 5.0 2190 0.3606 0.8288 0.7844 0.7968 0.8898
No log 6.0 2628 0.3700 0.8318 0.8002 0.8108 0.9037
No log 7.0 3066 0.3733 0.8522 0.8024 0.8163 0.9071
No log 8.0 3504 0.3711 0.8659 0.8203 0.8333 0.9189
No log 9.0 3942 0.3846 0.8599 0.8222 0.8343 0.9235
No log 10.0 4380 0.3920 0.8657 0.8263 0.8397 0.9284

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
354M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for izaitova/robbert-2023-dutch-large-upos

Finetuned
(4)
this model
Finetunes
1 model

Dataset used to train izaitova/robbert-2023-dutch-large-upos

Evaluation results