izaitova commited on
Commit
3fdabc0
1 Parent(s): 3231cf8

End of training

Browse files
Files changed (2) hide show
  1. README.md +99 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: DTAI-KULeuven/robbert-2023-dutch-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - universal_dependencies
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: robbert-2023-dutch-large-upos
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: universal_dependencies
21
+ type: universal_dependencies
22
+ config: nl_alpino
23
+ split: validation
24
+ args: nl_alpino
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8288342749653388
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.7844121660589751
32
+ - name: F1
33
+ type: f1
34
+ value: 0.7968496038696615
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.8897894458638006
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # robbert-2023-dutch-large-upos
44
+
45
+ This model is a fine-tuned version of [DTAI-KULeuven/robbert-2023-dutch-large](https://huggingface.co/DTAI-KULeuven/robbert-2023-dutch-large) on the universal_dependencies dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3606
48
+ - Precision: 0.8288
49
+ - Recall: 0.7844
50
+ - F1: 0.7968
51
+ - Accuracy: 0.8898
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 438 | 0.6318 | 0.7041 | 0.6544 | 0.6603 | 0.7663 |
83
+ | No log | 2.0 | 876 | 0.5374 | 0.7741 | 0.6827 | 0.7090 | 0.8075 |
84
+ | No log | 3.0 | 1314 | 0.4318 | 0.8544 | 0.7431 | 0.7527 | 0.8595 |
85
+ | No log | 4.0 | 1752 | 0.4009 | 0.8254 | 0.7677 | 0.7796 | 0.8771 |
86
+ | No log | 5.0 | 2190 | 0.3606 | 0.8288 | 0.7844 | 0.7968 | 0.8898 |
87
+ | No log | 6.0 | 2628 | 0.3700 | 0.8318 | 0.8002 | 0.8108 | 0.9037 |
88
+ | No log | 7.0 | 3066 | 0.3733 | 0.8522 | 0.8024 | 0.8163 | 0.9071 |
89
+ | No log | 8.0 | 3504 | 0.3711 | 0.8659 | 0.8203 | 0.8333 | 0.9189 |
90
+ | No log | 9.0 | 3942 | 0.3846 | 0.8599 | 0.8222 | 0.8343 | 0.9235 |
91
+ | No log | 10.0 | 4380 | 0.3920 | 0.8657 | 0.8263 | 0.8397 | 0.9284 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.42.4
97
+ - Pytorch 2.3.1+cu121
98
+ - Datasets 2.21.0
99
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7babb6ae789f73a4e59c8f08481fce09d624018a78a2ca8b4fba6fad0d9ceac
3
  size 1416268752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a68e0c8fa35ba01872168780d9faebd4fc25c9746344021ddb945dca4cd55cd
3
  size 1416268752