ruBert-large_ner / README.md
izaitova's picture
End of training
4e1d49e verified
metadata
base_model: ai-forever/ruBert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ruBert-large_ner
    results: []

ruBert-large_ner

This model is a fine-tuned version of ai-forever/ruBert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5158
  • Precision: 0.8832
  • Recall: 0.9014
  • F1: 0.8912
  • Accuracy: 0.9234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.3216 0.8700 0.8309 0.8448 0.8941
0.3915 2.0 876 0.3379 0.8596 0.8790 0.8672 0.9089
0.175 3.0 1314 0.3441 0.8656 0.8833 0.8737 0.9092
0.0942 4.0 1752 0.3751 0.8651 0.8856 0.8729 0.9104
0.0597 5.0 2190 0.3919 0.8881 0.9002 0.8935 0.9236
0.0309 6.0 2628 0.4360 0.8730 0.8958 0.8821 0.9171
0.0154 7.0 3066 0.4564 0.8848 0.8985 0.8907 0.9234
0.0064 8.0 3504 0.4809 0.8797 0.9036 0.8904 0.9236
0.0064 9.0 3942 0.5027 0.8832 0.9024 0.8917 0.9232
0.0024 10.0 4380 0.5158 0.8832 0.9014 0.8912 0.9234

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1