metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_spacy_ner_finetuned_news_article
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9865652034
- name: NER Recall
type: recall
value: 0.9823041611
- name: NER F Score
type: f_score
value: 0.9844300714
Feature | Description |
---|---|
Name | en_spacy_ner_finetuned_news_article |
Version | 0.0.0 |
spaCy | >=3.5.2,<3.6.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (15 labels for 1 components)
Component | Labels |
---|---|
ner |
EVENT , FAC , GPE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
Accuracy
Type | Score |
---|---|
ENTS_F |
98.44 |
ENTS_P |
98.66 |
ENTS_R |
98.23 |
TRANSFORMER_LOSS |
18923.26 |
NER_LOSS |
21258.62 |