udever-bloom-7b1 / README.md
izhx's picture
model
085a6f1
metadata
license: bigscience-bloom-rail-1.0
language:
  - ak
  - ar
  - as
  - bm
  - bn
  - ca
  - code
  - en
  - es
  - eu
  - fon
  - fr
  - gu
  - hi
  - id
  - ig
  - ki
  - kn
  - lg
  - ln
  - ml
  - mr
  - ne
  - nso
  - ny
  - or
  - pa
  - pt
  - rn
  - rw
  - sn
  - st
  - sw
  - ta
  - te
  - tn
  - ts
  - tum
  - tw
  - ur
  - vi
  - wo
  - xh
  - yo
  - zh
  - zhs
  - zht
  - zu
tags:
  - mteb
model-index:
  - name: udever-bloom-7b1
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 31.3788313486292
          - type: cos_sim_spearman
            value: 31.87117445808444
          - type: euclidean_pearson
            value: 30.66886666881808
          - type: euclidean_spearman
            value: 31.28368681542041
          - type: manhattan_pearson
            value: 30.679984531432936
          - type: manhattan_spearman
            value: 31.22208726593753
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 38.403248424956764
          - type: cos_sim_spearman
            value: 38.798254852046504
          - type: euclidean_pearson
            value: 41.154981142995084
          - type: euclidean_spearman
            value: 38.73503172297125
          - type: manhattan_pearson
            value: 41.20226384035751
          - type: manhattan_spearman
            value: 38.77085234568287
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 73.11940298507463
          - type: ap
            value: 35.692863077186466
          - type: f1
            value: 67.02733552778966
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 88.885175
          - type: ap
            value: 84.75400736514149
          - type: f1
            value: 88.85806225869703
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 43.202
          - type: f1
            value: 42.63847450850621
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.676
          - type: map_at_10
            value: 42.539
          - type: map_at_100
            value: 43.383
          - type: map_at_1000
            value: 43.39
          - type: map_at_3
            value: 36.996
          - type: map_at_5
            value: 40.175
          - type: mrr_at_1
            value: 26.387
          - type: mrr_at_10
            value: 42.792
          - type: mrr_at_100
            value: 43.637
          - type: mrr_at_1000
            value: 43.644
          - type: mrr_at_3
            value: 37.21
          - type: mrr_at_5
            value: 40.407
          - type: ndcg_at_1
            value: 25.676
          - type: ndcg_at_10
            value: 52.207
          - type: ndcg_at_100
            value: 55.757999999999996
          - type: ndcg_at_1000
            value: 55.913999999999994
          - type: ndcg_at_3
            value: 40.853
          - type: ndcg_at_5
            value: 46.588
          - type: precision_at_1
            value: 25.676
          - type: precision_at_10
            value: 8.314
          - type: precision_at_100
            value: 0.985
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 17.354
          - type: precision_at_5
            value: 13.200999999999999
          - type: recall_at_1
            value: 25.676
          - type: recall_at_10
            value: 83.14399999999999
          - type: recall_at_100
            value: 98.506
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 52.063
          - type: recall_at_5
            value: 66.003
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 45.66024127046263
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 38.418361433667336
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 61.60189642383972
          - type: mrr
            value: 75.26678538451391
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.85884182572595
          - type: cos_sim_spearman
            value: 85.5242378844044
          - type: euclidean_pearson
            value: 85.37705073557146
          - type: euclidean_spearman
            value: 84.65132642825964
          - type: manhattan_pearson
            value: 85.42179213807349
          - type: manhattan_spearman
            value: 84.6959057572829
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 47.81802155652125
          - type: cos_sim_spearman
            value: 47.66691834501235
          - type: euclidean_pearson
            value: 47.781824357030935
          - type: euclidean_spearman
            value: 48.03322284408188
          - type: manhattan_pearson
            value: 47.871159981038346
          - type: manhattan_spearman
            value: 48.18240784527666
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 88.29853862212944
          - type: f1
            value: 87.70994966904566
          - type: precision
            value: 87.43152897902377
          - type: recall
            value: 88.29853862212944
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.6022452124147
          - type: f1
            value: 98.40597255851495
          - type: precision
            value: 98.30875339349916
          - type: recall
            value: 98.6022452124147
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 79.64669206789054
          - type: f1
            value: 78.74831345770036
          - type: precision
            value: 78.33899087865143
          - type: recall
            value: 79.64669206789054
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.78883622959452
          - type: f1
            value: 98.7712831314727
          - type: precision
            value: 98.76250658241179
          - type: recall
            value: 98.78883622959452
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 85.36363636363637
          - type: f1
            value: 85.33381612267455
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.54276849354455
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 32.18953191097238
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 36.00041315364012
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 36.35255790689628
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 70.54141681949504
          - type: mrr
            value: 74.81400793650795
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 71.3534829537025
          - type: mrr
            value: 75.85095238095238
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.5
          - type: map_at_10
            value: 43.37
          - type: map_at_100
            value: 44.926
          - type: map_at_1000
            value: 45.047
          - type: map_at_3
            value: 40.083999999999996
          - type: map_at_5
            value: 41.71
          - type: mrr_at_1
            value: 40.343
          - type: mrr_at_10
            value: 49.706
          - type: mrr_at_100
            value: 50.470000000000006
          - type: mrr_at_1000
            value: 50.515
          - type: mrr_at_3
            value: 47.306
          - type: mrr_at_5
            value: 48.379
          - type: ndcg_at_1
            value: 40.343
          - type: ndcg_at_10
            value: 49.461
          - type: ndcg_at_100
            value: 55.084999999999994
          - type: ndcg_at_1000
            value: 56.994
          - type: ndcg_at_3
            value: 44.896
          - type: ndcg_at_5
            value: 46.437
          - type: precision_at_1
            value: 40.343
          - type: precision_at_10
            value: 9.27
          - type: precision_at_100
            value: 1.5190000000000001
          - type: precision_at_1000
            value: 0.197
          - type: precision_at_3
            value: 21.412
          - type: precision_at_5
            value: 15.021
          - type: recall_at_1
            value: 32.5
          - type: recall_at_10
            value: 60.857000000000006
          - type: recall_at_100
            value: 83.761
          - type: recall_at_1000
            value: 96.003
          - type: recall_at_3
            value: 46.675
          - type: recall_at_5
            value: 51.50900000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.931
          - type: map_at_10
            value: 35.769
          - type: map_at_100
            value: 36.8
          - type: map_at_1000
            value: 36.925999999999995
          - type: map_at_3
            value: 33.068999999999996
          - type: map_at_5
            value: 34.615
          - type: mrr_at_1
            value: 34.013
          - type: mrr_at_10
            value: 41.293
          - type: mrr_at_100
            value: 41.945
          - type: mrr_at_1000
            value: 42.002
          - type: mrr_at_3
            value: 39.204
          - type: mrr_at_5
            value: 40.436
          - type: ndcg_at_1
            value: 34.013
          - type: ndcg_at_10
            value: 40.935
          - type: ndcg_at_100
            value: 44.879999999999995
          - type: ndcg_at_1000
            value: 47.342
          - type: ndcg_at_3
            value: 37.071
          - type: ndcg_at_5
            value: 38.903
          - type: precision_at_1
            value: 34.013
          - type: precision_at_10
            value: 7.617999999999999
          - type: precision_at_100
            value: 1.185
          - type: precision_at_1000
            value: 0.169
          - type: precision_at_3
            value: 17.855999999999998
          - type: precision_at_5
            value: 12.65
          - type: recall_at_1
            value: 26.931
          - type: recall_at_10
            value: 50.256
          - type: recall_at_100
            value: 67.026
          - type: recall_at_1000
            value: 83.138
          - type: recall_at_3
            value: 38.477
          - type: recall_at_5
            value: 43.784
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.474000000000004
          - type: map_at_10
            value: 50.486
          - type: map_at_100
            value: 51.620999999999995
          - type: map_at_1000
            value: 51.675000000000004
          - type: map_at_3
            value: 47.64
          - type: map_at_5
            value: 49.187999999999995
          - type: mrr_at_1
            value: 43.824000000000005
          - type: mrr_at_10
            value: 53.910000000000004
          - type: mrr_at_100
            value: 54.601
          - type: mrr_at_1000
            value: 54.632000000000005
          - type: mrr_at_3
            value: 51.578
          - type: mrr_at_5
            value: 52.922999999999995
          - type: ndcg_at_1
            value: 43.824000000000005
          - type: ndcg_at_10
            value: 56.208000000000006
          - type: ndcg_at_100
            value: 60.624
          - type: ndcg_at_1000
            value: 61.78
          - type: ndcg_at_3
            value: 51.27
          - type: ndcg_at_5
            value: 53.578
          - type: precision_at_1
            value: 43.824000000000005
          - type: precision_at_10
            value: 8.978
          - type: precision_at_100
            value: 1.216
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 22.884
          - type: precision_at_5
            value: 15.498000000000001
          - type: recall_at_1
            value: 38.474000000000004
          - type: recall_at_10
            value: 69.636
          - type: recall_at_100
            value: 88.563
          - type: recall_at_1000
            value: 96.86200000000001
          - type: recall_at_3
            value: 56.347
          - type: recall_at_5
            value: 61.980000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.13
          - type: map_at_10
            value: 31.892
          - type: map_at_100
            value: 32.938
          - type: map_at_1000
            value: 33.025999999999996
          - type: map_at_3
            value: 29.072
          - type: map_at_5
            value: 30.775000000000002
          - type: mrr_at_1
            value: 25.197999999999997
          - type: mrr_at_10
            value: 34.224
          - type: mrr_at_100
            value: 35.149
          - type: mrr_at_1000
            value: 35.215999999999994
          - type: mrr_at_3
            value: 31.563000000000002
          - type: mrr_at_5
            value: 33.196
          - type: ndcg_at_1
            value: 25.197999999999997
          - type: ndcg_at_10
            value: 37.117
          - type: ndcg_at_100
            value: 42.244
          - type: ndcg_at_1000
            value: 44.432
          - type: ndcg_at_3
            value: 31.604
          - type: ndcg_at_5
            value: 34.543
          - type: precision_at_1
            value: 25.197999999999997
          - type: precision_at_10
            value: 5.876
          - type: precision_at_100
            value: 0.886
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 13.672
          - type: precision_at_5
            value: 9.831
          - type: recall_at_1
            value: 23.13
          - type: recall_at_10
            value: 50.980000000000004
          - type: recall_at_100
            value: 74.565
          - type: recall_at_1000
            value: 90.938
          - type: recall_at_3
            value: 36.038
          - type: recall_at_5
            value: 43.326
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.317
          - type: map_at_10
            value: 24.517
          - type: map_at_100
            value: 25.771
          - type: map_at_1000
            value: 25.915
          - type: map_at_3
            value: 22.332
          - type: map_at_5
            value: 23.526
          - type: mrr_at_1
            value: 21.766
          - type: mrr_at_10
            value: 29.096
          - type: mrr_at_100
            value: 30.165
          - type: mrr_at_1000
            value: 30.253000000000004
          - type: mrr_at_3
            value: 27.114
          - type: mrr_at_5
            value: 28.284
          - type: ndcg_at_1
            value: 21.766
          - type: ndcg_at_10
            value: 29.060999999999996
          - type: ndcg_at_100
            value: 35.107
          - type: ndcg_at_1000
            value: 38.339
          - type: ndcg_at_3
            value: 25.121
          - type: ndcg_at_5
            value: 26.953
          - type: precision_at_1
            value: 21.766
          - type: precision_at_10
            value: 5.274
          - type: precision_at_100
            value: 0.958
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 11.816
          - type: precision_at_5
            value: 8.433
          - type: recall_at_1
            value: 17.317
          - type: recall_at_10
            value: 38.379999999999995
          - type: recall_at_100
            value: 64.792
          - type: recall_at_1000
            value: 87.564
          - type: recall_at_3
            value: 27.737000000000002
          - type: recall_at_5
            value: 32.340999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.876
          - type: map_at_10
            value: 40.02
          - type: map_at_100
            value: 41.367
          - type: map_at_1000
            value: 41.482
          - type: map_at_3
            value: 36.651
          - type: map_at_5
            value: 38.411
          - type: mrr_at_1
            value: 35.804
          - type: mrr_at_10
            value: 45.946999999999996
          - type: mrr_at_100
            value: 46.696
          - type: mrr_at_1000
            value: 46.741
          - type: mrr_at_3
            value: 43.118
          - type: mrr_at_5
            value: 44.74
          - type: ndcg_at_1
            value: 35.804
          - type: ndcg_at_10
            value: 46.491
          - type: ndcg_at_100
            value: 51.803
          - type: ndcg_at_1000
            value: 53.845
          - type: ndcg_at_3
            value: 40.97
          - type: ndcg_at_5
            value: 43.431
          - type: precision_at_1
            value: 35.804
          - type: precision_at_10
            value: 8.595
          - type: precision_at_100
            value: 1.312
          - type: precision_at_1000
            value: 0.167
          - type: precision_at_3
            value: 19.634
          - type: precision_at_5
            value: 13.879
          - type: recall_at_1
            value: 28.876
          - type: recall_at_10
            value: 59.952000000000005
          - type: recall_at_100
            value: 81.978
          - type: recall_at_1000
            value: 95.03399999999999
          - type: recall_at_3
            value: 44.284
          - type: recall_at_5
            value: 50.885999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.238
          - type: map_at_10
            value: 34.276
          - type: map_at_100
            value: 35.65
          - type: map_at_1000
            value: 35.769
          - type: map_at_3
            value: 31.227
          - type: map_at_5
            value: 33.046
          - type: mrr_at_1
            value: 30.137000000000004
          - type: mrr_at_10
            value: 39.473
          - type: mrr_at_100
            value: 40.400999999999996
          - type: mrr_at_1000
            value: 40.455000000000005
          - type: mrr_at_3
            value: 36.891
          - type: mrr_at_5
            value: 38.391999999999996
          - type: ndcg_at_1
            value: 30.137000000000004
          - type: ndcg_at_10
            value: 40.08
          - type: ndcg_at_100
            value: 46.01
          - type: ndcg_at_1000
            value: 48.36
          - type: ndcg_at_3
            value: 35.163
          - type: ndcg_at_5
            value: 37.583
          - type: precision_at_1
            value: 30.137000000000004
          - type: precision_at_10
            value: 7.466
          - type: precision_at_100
            value: 1.228
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 17.122999999999998
          - type: precision_at_5
            value: 12.283
          - type: recall_at_1
            value: 24.238
          - type: recall_at_10
            value: 52.078
          - type: recall_at_100
            value: 77.643
          - type: recall_at_1000
            value: 93.49199999999999
          - type: recall_at_3
            value: 38.161
          - type: recall_at_5
            value: 44.781
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.915250000000004
          - type: map_at_10
            value: 33.98191666666666
          - type: map_at_100
            value: 35.19166666666667
          - type: map_at_1000
            value: 35.30983333333333
          - type: map_at_3
            value: 31.27391666666666
          - type: map_at_5
            value: 32.74366666666666
          - type: mrr_at_1
            value: 29.800749999999994
          - type: mrr_at_10
            value: 38.235749999999996
          - type: mrr_at_100
            value: 39.10616666666667
          - type: mrr_at_1000
            value: 39.166583333333335
          - type: mrr_at_3
            value: 35.91033333333334
          - type: mrr_at_5
            value: 37.17766666666667
          - type: ndcg_at_1
            value: 29.800749999999994
          - type: ndcg_at_10
            value: 39.287833333333325
          - type: ndcg_at_100
            value: 44.533833333333334
          - type: ndcg_at_1000
            value: 46.89608333333333
          - type: ndcg_at_3
            value: 34.676
          - type: ndcg_at_5
            value: 36.75208333333333
          - type: precision_at_1
            value: 29.800749999999994
          - type: precision_at_10
            value: 6.9134166666666665
          - type: precision_at_100
            value: 1.1206666666666665
          - type: precision_at_1000
            value: 0.15116666666666667
          - type: precision_at_3
            value: 16.069083333333335
          - type: precision_at_5
            value: 11.337916666666668
          - type: recall_at_1
            value: 24.915250000000004
          - type: recall_at_10
            value: 50.86333333333334
          - type: recall_at_100
            value: 73.85574999999999
          - type: recall_at_1000
            value: 90.24041666666666
          - type: recall_at_3
            value: 37.80116666666666
          - type: recall_at_5
            value: 43.263
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.853
          - type: map_at_10
            value: 30.349999999999998
          - type: map_at_100
            value: 31.341
          - type: map_at_1000
            value: 31.44
          - type: map_at_3
            value: 28.294999999999998
          - type: map_at_5
            value: 29.412
          - type: mrr_at_1
            value: 25.919999999999998
          - type: mrr_at_10
            value: 33.194
          - type: mrr_at_100
            value: 34.071
          - type: mrr_at_1000
            value: 34.136
          - type: mrr_at_3
            value: 31.391000000000002
          - type: mrr_at_5
            value: 32.311
          - type: ndcg_at_1
            value: 25.919999999999998
          - type: ndcg_at_10
            value: 34.691
          - type: ndcg_at_100
            value: 39.83
          - type: ndcg_at_1000
            value: 42.193000000000005
          - type: ndcg_at_3
            value: 30.91
          - type: ndcg_at_5
            value: 32.634
          - type: precision_at_1
            value: 25.919999999999998
          - type: precision_at_10
            value: 5.521
          - type: precision_at_100
            value: 0.882
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 13.547999999999998
          - type: precision_at_5
            value: 9.293999999999999
          - type: recall_at_1
            value: 22.853
          - type: recall_at_10
            value: 45.145
          - type: recall_at_100
            value: 69.158
          - type: recall_at_1000
            value: 86.354
          - type: recall_at_3
            value: 34.466
          - type: recall_at_5
            value: 39.044000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.151
          - type: map_at_10
            value: 23.674
          - type: map_at_100
            value: 24.738
          - type: map_at_1000
            value: 24.864
          - type: map_at_3
            value: 21.514
          - type: map_at_5
            value: 22.695
          - type: mrr_at_1
            value: 20.991
          - type: mrr_at_10
            value: 27.612
          - type: mrr_at_100
            value: 28.526
          - type: mrr_at_1000
            value: 28.603
          - type: mrr_at_3
            value: 25.618999999999996
          - type: mrr_at_5
            value: 26.674
          - type: ndcg_at_1
            value: 20.991
          - type: ndcg_at_10
            value: 27.983000000000004
          - type: ndcg_at_100
            value: 33.190999999999995
          - type: ndcg_at_1000
            value: 36.172
          - type: ndcg_at_3
            value: 24.195
          - type: ndcg_at_5
            value: 25.863999999999997
          - type: precision_at_1
            value: 20.991
          - type: precision_at_10
            value: 5.093
          - type: precision_at_100
            value: 0.8959999999999999
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 11.402
          - type: precision_at_5
            value: 8.197000000000001
          - type: recall_at_1
            value: 17.151
          - type: recall_at_10
            value: 37.025000000000006
          - type: recall_at_100
            value: 60.787
          - type: recall_at_1000
            value: 82.202
          - type: recall_at_3
            value: 26.19
          - type: recall_at_5
            value: 30.657
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.463
          - type: map_at_10
            value: 34.372
          - type: map_at_100
            value: 35.475
          - type: map_at_1000
            value: 35.582
          - type: map_at_3
            value: 31.791000000000004
          - type: map_at_5
            value: 33.292
          - type: mrr_at_1
            value: 30.784
          - type: mrr_at_10
            value: 38.948
          - type: mrr_at_100
            value: 39.792
          - type: mrr_at_1000
            value: 39.857
          - type: mrr_at_3
            value: 36.614000000000004
          - type: mrr_at_5
            value: 37.976
          - type: ndcg_at_1
            value: 30.784
          - type: ndcg_at_10
            value: 39.631
          - type: ndcg_at_100
            value: 44.747
          - type: ndcg_at_1000
            value: 47.172
          - type: ndcg_at_3
            value: 34.976
          - type: ndcg_at_5
            value: 37.241
          - type: precision_at_1
            value: 30.784
          - type: precision_at_10
            value: 6.622999999999999
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 16.014
          - type: precision_at_5
            value: 11.286999999999999
          - type: recall_at_1
            value: 25.463
          - type: recall_at_10
            value: 51.23799999999999
          - type: recall_at_100
            value: 73.4
          - type: recall_at_1000
            value: 90.634
          - type: recall_at_3
            value: 38.421
          - type: recall_at_5
            value: 44.202999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.714
          - type: map_at_10
            value: 32.712
          - type: map_at_100
            value: 34.337
          - type: map_at_1000
            value: 34.556
          - type: map_at_3
            value: 29.747
          - type: map_at_5
            value: 31.208000000000002
          - type: mrr_at_1
            value: 29.051
          - type: mrr_at_10
            value: 37.589
          - type: mrr_at_100
            value: 38.638
          - type: mrr_at_1000
            value: 38.692
          - type: mrr_at_3
            value: 35.079
          - type: mrr_at_5
            value: 36.265
          - type: ndcg_at_1
            value: 29.051
          - type: ndcg_at_10
            value: 38.681
          - type: ndcg_at_100
            value: 44.775999999999996
          - type: ndcg_at_1000
            value: 47.354
          - type: ndcg_at_3
            value: 33.888
          - type: ndcg_at_5
            value: 35.854
          - type: precision_at_1
            value: 29.051
          - type: precision_at_10
            value: 7.489999999999999
          - type: precision_at_100
            value: 1.518
          - type: precision_at_1000
            value: 0.241
          - type: precision_at_3
            value: 16.008
          - type: precision_at_5
            value: 11.66
          - type: recall_at_1
            value: 23.714
          - type: recall_at_10
            value: 50.324000000000005
          - type: recall_at_100
            value: 77.16
          - type: recall_at_1000
            value: 93.186
          - type: recall_at_3
            value: 36.356
          - type: recall_at_5
            value: 41.457
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.336
          - type: map_at_10
            value: 26.345000000000002
          - type: map_at_100
            value: 27.336
          - type: map_at_1000
            value: 27.436
          - type: map_at_3
            value: 23.865
          - type: map_at_5
            value: 25.046000000000003
          - type: mrr_at_1
            value: 19.778000000000002
          - type: mrr_at_10
            value: 27.837
          - type: mrr_at_100
            value: 28.82
          - type: mrr_at_1000
            value: 28.897000000000002
          - type: mrr_at_3
            value: 25.446999999999996
          - type: mrr_at_5
            value: 26.556
          - type: ndcg_at_1
            value: 19.778000000000002
          - type: ndcg_at_10
            value: 31.115
          - type: ndcg_at_100
            value: 36.109
          - type: ndcg_at_1000
            value: 38.769999999999996
          - type: ndcg_at_3
            value: 26.048
          - type: ndcg_at_5
            value: 28.004
          - type: precision_at_1
            value: 19.778000000000002
          - type: precision_at_10
            value: 5.157
          - type: precision_at_100
            value: 0.808
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 11.459999999999999
          - type: precision_at_5
            value: 8.022
          - type: recall_at_1
            value: 18.336
          - type: recall_at_10
            value: 44.489000000000004
          - type: recall_at_100
            value: 67.43599999999999
          - type: recall_at_1000
            value: 87.478
          - type: recall_at_3
            value: 30.462
          - type: recall_at_5
            value: 35.188
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.747
          - type: map_at_10
            value: 18.625
          - type: map_at_100
            value: 20.465
          - type: map_at_1000
            value: 20.639
          - type: map_at_3
            value: 15.57
          - type: map_at_5
            value: 17.089
          - type: mrr_at_1
            value: 24.169
          - type: mrr_at_10
            value: 35.96
          - type: mrr_at_100
            value: 36.888
          - type: mrr_at_1000
            value: 36.931999999999995
          - type: mrr_at_3
            value: 32.443
          - type: mrr_at_5
            value: 34.433
          - type: ndcg_at_1
            value: 24.169
          - type: ndcg_at_10
            value: 26.791999999999998
          - type: ndcg_at_100
            value: 34.054
          - type: ndcg_at_1000
            value: 37.285000000000004
          - type: ndcg_at_3
            value: 21.636
          - type: ndcg_at_5
            value: 23.394000000000002
          - type: precision_at_1
            value: 24.169
          - type: precision_at_10
            value: 8.476
          - type: precision_at_100
            value: 1.6209999999999998
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 16.156000000000002
          - type: precision_at_5
            value: 12.520999999999999
          - type: recall_at_1
            value: 10.747
          - type: recall_at_10
            value: 32.969
          - type: recall_at_100
            value: 57.99999999999999
          - type: recall_at_1000
            value: 76.12299999999999
          - type: recall_at_3
            value: 20.315
          - type: recall_at_5
            value: 25.239
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 14.751
          - type: map_at_10
            value: 22.03
          - type: map_at_100
            value: 23.471
          - type: map_at_1000
            value: 23.644000000000002
          - type: map_at_3
            value: 19.559
          - type: map_at_5
            value: 20.863
          - type: mrr_at_1
            value: 23.581
          - type: mrr_at_10
            value: 29.863
          - type: mrr_at_100
            value: 30.839
          - type: mrr_at_1000
            value: 30.925000000000004
          - type: mrr_at_3
            value: 27.894000000000002
          - type: mrr_at_5
            value: 28.965999999999998
          - type: ndcg_at_1
            value: 23.581
          - type: ndcg_at_10
            value: 26.996
          - type: ndcg_at_100
            value: 33.537
          - type: ndcg_at_1000
            value: 37.307
          - type: ndcg_at_3
            value: 23.559
          - type: ndcg_at_5
            value: 24.839
          - type: precision_at_1
            value: 23.581
          - type: precision_at_10
            value: 6.209
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.165
          - type: precision_at_3
            value: 13.62
          - type: precision_at_5
            value: 9.882
          - type: recall_at_1
            value: 14.751
          - type: recall_at_10
            value: 34.075
          - type: recall_at_100
            value: 61.877
          - type: recall_at_1000
            value: 88.212
          - type: recall_at_3
            value: 23.519000000000002
          - type: recall_at_5
            value: 27.685
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 76.36800962116656
          - type: cos_sim_ap
            value: 85.14376065556142
          - type: cos_sim_f1
            value: 77.81474723623485
          - type: cos_sim_precision
            value: 71.92460317460318
          - type: cos_sim_recall
            value: 84.75566986205284
          - type: dot_accuracy
            value: 71.94227300060132
          - type: dot_ap
            value: 79.03676891584456
          - type: dot_f1
            value: 74.95833333333334
          - type: dot_precision
            value: 67.59346233327072
          - type: dot_recall
            value: 84.12438625204582
          - type: euclidean_accuracy
            value: 76.043295249549
          - type: euclidean_ap
            value: 85.28765360616536
          - type: euclidean_f1
            value: 78.01733248784612
          - type: euclidean_precision
            value: 71.1861137897782
          - type: euclidean_recall
            value: 86.29880757540333
          - type: manhattan_accuracy
            value: 76.17558628983764
          - type: manhattan_ap
            value: 85.52739323094916
          - type: manhattan_f1
            value: 78.30788804071246
          - type: manhattan_precision
            value: 71.63918525703201
          - type: manhattan_recall
            value: 86.34556932429273
          - type: max_accuracy
            value: 76.36800962116656
          - type: max_ap
            value: 85.52739323094916
          - type: max_f1
            value: 78.30788804071246
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 56.164
          - type: map_at_10
            value: 64.575
          - type: map_at_100
            value: 65.098
          - type: map_at_1000
            value: 65.118
          - type: map_at_3
            value: 62.329
          - type: map_at_5
            value: 63.535
          - type: mrr_at_1
            value: 56.269999999999996
          - type: mrr_at_10
            value: 64.63600000000001
          - type: mrr_at_100
            value: 65.14
          - type: mrr_at_1000
            value: 65.16
          - type: mrr_at_3
            value: 62.522
          - type: mrr_at_5
            value: 63.57000000000001
          - type: ndcg_at_1
            value: 56.269999999999996
          - type: ndcg_at_10
            value: 68.855
          - type: ndcg_at_100
            value: 71.47099999999999
          - type: ndcg_at_1000
            value: 72.02499999999999
          - type: ndcg_at_3
            value: 64.324
          - type: ndcg_at_5
            value: 66.417
          - type: precision_at_1
            value: 56.269999999999996
          - type: precision_at_10
            value: 8.303
          - type: precision_at_100
            value: 0.9570000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 23.427999999999997
          - type: precision_at_5
            value: 15.09
          - type: recall_at_1
            value: 56.164
          - type: recall_at_10
            value: 82.271
          - type: recall_at_100
            value: 94.626
          - type: recall_at_1000
            value: 99.05199999999999
          - type: recall_at_3
            value: 69.94200000000001
          - type: recall_at_5
            value: 74.947
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.686
          - type: map_at_10
            value: 17.766000000000002
          - type: map_at_100
            value: 23.507
          - type: map_at_1000
            value: 24.757
          - type: map_at_3
            value: 13.238
          - type: map_at_5
            value: 15.161
          - type: mrr_at_1
            value: 65.25
          - type: mrr_at_10
            value: 72.88
          - type: mrr_at_100
            value: 73.246
          - type: mrr_at_1000
            value: 73.261
          - type: mrr_at_3
            value: 71.542
          - type: mrr_at_5
            value: 72.392
          - type: ndcg_at_1
            value: 53.75
          - type: ndcg_at_10
            value: 37.623
          - type: ndcg_at_100
            value: 40.302
          - type: ndcg_at_1000
            value: 47.471999999999994
          - type: ndcg_at_3
            value: 43.324
          - type: ndcg_at_5
            value: 39.887
          - type: precision_at_1
            value: 65.25
          - type: precision_at_10
            value: 28.749999999999996
          - type: precision_at_100
            value: 8.34
          - type: precision_at_1000
            value: 1.703
          - type: precision_at_3
            value: 46.583000000000006
          - type: precision_at_5
            value: 38
          - type: recall_at_1
            value: 8.686
          - type: recall_at_10
            value: 22.966
          - type: recall_at_100
            value: 44.3
          - type: recall_at_1000
            value: 67.77499999999999
          - type: recall_at_3
            value: 14.527999999999999
          - type: recall_at_5
            value: 17.617
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.439
          - type: map_at_10
            value: 68.484
          - type: map_at_100
            value: 71.67999999999999
          - type: map_at_1000
            value: 71.761
          - type: map_at_3
            value: 46.373999999999995
          - type: map_at_5
            value: 58.697
          - type: mrr_at_1
            value: 80.65
          - type: mrr_at_10
            value: 86.53
          - type: mrr_at_100
            value: 86.624
          - type: mrr_at_1000
            value: 86.631
          - type: mrr_at_3
            value: 85.95
          - type: mrr_at_5
            value: 86.297
          - type: ndcg_at_1
            value: 80.65
          - type: ndcg_at_10
            value: 78.075
          - type: ndcg_at_100
            value: 82.014
          - type: ndcg_at_1000
            value: 82.903
          - type: ndcg_at_3
            value: 75.785
          - type: ndcg_at_5
            value: 74.789
          - type: precision_at_1
            value: 80.65
          - type: precision_at_10
            value: 38.425
          - type: precision_at_100
            value: 4.62
          - type: precision_at_1000
            value: 0.483
          - type: precision_at_3
            value: 68.25
          - type: precision_at_5
            value: 57.92
          - type: recall_at_1
            value: 22.439
          - type: recall_at_10
            value: 80.396
          - type: recall_at_100
            value: 92.793
          - type: recall_at_1000
            value: 97.541
          - type: recall_at_3
            value: 49.611
          - type: recall_at_5
            value: 65.065
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 43.9
          - type: map_at_10
            value: 53.394
          - type: map_at_100
            value: 54.078
          - type: map_at_1000
            value: 54.105000000000004
          - type: map_at_3
            value: 50.583
          - type: map_at_5
            value: 52.443
          - type: mrr_at_1
            value: 43.9
          - type: mrr_at_10
            value: 53.394
          - type: mrr_at_100
            value: 54.078
          - type: mrr_at_1000
            value: 54.105000000000004
          - type: mrr_at_3
            value: 50.583
          - type: mrr_at_5
            value: 52.443
          - type: ndcg_at_1
            value: 43.9
          - type: ndcg_at_10
            value: 58.341
          - type: ndcg_at_100
            value: 61.753
          - type: ndcg_at_1000
            value: 62.525
          - type: ndcg_at_3
            value: 52.699
          - type: ndcg_at_5
            value: 56.042
          - type: precision_at_1
            value: 43.9
          - type: precision_at_10
            value: 7.3999999999999995
          - type: precision_at_100
            value: 0.901
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 19.6
          - type: precision_at_5
            value: 13.38
          - type: recall_at_1
            value: 43.9
          - type: recall_at_10
            value: 74
          - type: recall_at_100
            value: 90.10000000000001
          - type: recall_at_1000
            value: 96.3
          - type: recall_at_3
            value: 58.8
          - type: recall_at_5
            value: 66.9
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 48.765
          - type: f1
            value: 44.2791193129597
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 56.89999999999999
          - type: map_at_10
            value: 68.352
          - type: map_at_100
            value: 68.768
          - type: map_at_1000
            value: 68.782
          - type: map_at_3
            value: 66.27300000000001
          - type: map_at_5
            value: 67.67699999999999
          - type: mrr_at_1
            value: 61.476
          - type: mrr_at_10
            value: 72.662
          - type: mrr_at_100
            value: 72.993
          - type: mrr_at_1000
            value: 72.99799999999999
          - type: mrr_at_3
            value: 70.75200000000001
          - type: mrr_at_5
            value: 72.056
          - type: ndcg_at_1
            value: 61.476
          - type: ndcg_at_10
            value: 73.98400000000001
          - type: ndcg_at_100
            value: 75.744
          - type: ndcg_at_1000
            value: 76.036
          - type: ndcg_at_3
            value: 70.162
          - type: ndcg_at_5
            value: 72.482
          - type: precision_at_1
            value: 61.476
          - type: precision_at_10
            value: 9.565
          - type: precision_at_100
            value: 1.054
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 27.943
          - type: precision_at_5
            value: 18.056
          - type: recall_at_1
            value: 56.89999999999999
          - type: recall_at_10
            value: 87.122
          - type: recall_at_100
            value: 94.742
          - type: recall_at_1000
            value: 96.70100000000001
          - type: recall_at_3
            value: 76.911
          - type: recall_at_5
            value: 82.607
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.610999999999997
          - type: map_at_10
            value: 29.12
          - type: map_at_100
            value: 30.958000000000002
          - type: map_at_1000
            value: 31.151
          - type: map_at_3
            value: 25.369000000000003
          - type: map_at_5
            value: 27.445000000000004
          - type: mrr_at_1
            value: 35.185
          - type: mrr_at_10
            value: 44.533
          - type: mrr_at_100
            value: 45.385
          - type: mrr_at_1000
            value: 45.432
          - type: mrr_at_3
            value: 42.258
          - type: mrr_at_5
            value: 43.608999999999995
          - type: ndcg_at_1
            value: 35.185
          - type: ndcg_at_10
            value: 36.696
          - type: ndcg_at_100
            value: 43.491
          - type: ndcg_at_1000
            value: 46.800000000000004
          - type: ndcg_at_3
            value: 33.273
          - type: ndcg_at_5
            value: 34.336
          - type: precision_at_1
            value: 35.185
          - type: precision_at_10
            value: 10.309
          - type: precision_at_100
            value: 1.719
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 22.479
          - type: precision_at_5
            value: 16.481
          - type: recall_at_1
            value: 17.610999999999997
          - type: recall_at_10
            value: 43.29
          - type: recall_at_100
            value: 68.638
          - type: recall_at_1000
            value: 88.444
          - type: recall_at_3
            value: 30.303
          - type: recall_at_5
            value: 35.856
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.18
          - type: map_at_10
            value: 47.753
          - type: map_at_100
            value: 48.522
          - type: map_at_1000
            value: 48.596000000000004
          - type: map_at_3
            value: 45.222
          - type: map_at_5
            value: 46.793
          - type: mrr_at_1
            value: 68.35900000000001
          - type: mrr_at_10
            value: 74.503
          - type: mrr_at_100
            value: 74.811
          - type: mrr_at_1000
            value: 74.82799999999999
          - type: mrr_at_3
            value: 73.347
          - type: mrr_at_5
            value: 74.06700000000001
          - type: ndcg_at_1
            value: 68.35900000000001
          - type: ndcg_at_10
            value: 56.665
          - type: ndcg_at_100
            value: 59.629
          - type: ndcg_at_1000
            value: 61.222
          - type: ndcg_at_3
            value: 52.81400000000001
          - type: ndcg_at_5
            value: 54.94
          - type: precision_at_1
            value: 68.35900000000001
          - type: precision_at_10
            value: 11.535
          - type: precision_at_100
            value: 1.388
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 32.784
          - type: precision_at_5
            value: 21.348
          - type: recall_at_1
            value: 34.18
          - type: recall_at_10
            value: 57.677
          - type: recall_at_100
            value: 69.379
          - type: recall_at_1000
            value: 80.061
          - type: recall_at_3
            value: 49.175999999999995
          - type: recall_at_5
            value: 53.369
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 46.23316660253944
          - type: f1
            value: 39.09397722262806
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 78.46119999999999
          - type: ap
            value: 72.53477126781094
          - type: f1
            value: 78.28701752379332
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 84.16510318949344
          - type: ap
            value: 50.10324581565756
          - type: f1
            value: 78.34748161287605
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 68.71925879533819
          - type: cos_sim_spearman
            value: 75.33926640820977
          - type: euclidean_pearson
            value: 74.59557932790653
          - type: euclidean_spearman
            value: 75.76006440878783
          - type: manhattan_pearson
            value: 74.7461963483351
          - type: manhattan_spearman
            value: 75.87111519308131
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 66.249
          - type: map_at_10
            value: 75.236
          - type: map_at_100
            value: 75.581
          - type: map_at_1000
            value: 75.593
          - type: map_at_3
            value: 73.463
          - type: map_at_5
            value: 74.602
          - type: mrr_at_1
            value: 68.42399999999999
          - type: mrr_at_10
            value: 75.81099999999999
          - type: mrr_at_100
            value: 76.115
          - type: mrr_at_1000
            value: 76.126
          - type: mrr_at_3
            value: 74.26899999999999
          - type: mrr_at_5
            value: 75.24300000000001
          - type: ndcg_at_1
            value: 68.42399999999999
          - type: ndcg_at_10
            value: 78.81700000000001
          - type: ndcg_at_100
            value: 80.379
          - type: ndcg_at_1000
            value: 80.667
          - type: ndcg_at_3
            value: 75.476
          - type: ndcg_at_5
            value: 77.38199999999999
          - type: precision_at_1
            value: 68.42399999999999
          - type: precision_at_10
            value: 9.491
          - type: precision_at_100
            value: 1.027
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.352
          - type: precision_at_5
            value: 18.043
          - type: recall_at_1
            value: 66.249
          - type: recall_at_10
            value: 89.238
          - type: recall_at_100
            value: 96.319
          - type: recall_at_1000
            value: 98.524
          - type: recall_at_3
            value: 80.438
          - type: recall_at_5
            value: 84.95
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.083000000000002
          - type: map_at_10
            value: 35.251
          - type: map_at_100
            value: 36.461
          - type: map_at_1000
            value: 36.507
          - type: map_at_3
            value: 31.474999999999998
          - type: map_at_5
            value: 33.658
          - type: mrr_at_1
            value: 23.724999999999998
          - type: mrr_at_10
            value: 35.88
          - type: mrr_at_100
            value: 37.021
          - type: mrr_at_1000
            value: 37.062
          - type: mrr_at_3
            value: 32.159
          - type: mrr_at_5
            value: 34.325
          - type: ndcg_at_1
            value: 23.724999999999998
          - type: ndcg_at_10
            value: 42.018
          - type: ndcg_at_100
            value: 47.764
          - type: ndcg_at_1000
            value: 48.916
          - type: ndcg_at_3
            value: 34.369
          - type: ndcg_at_5
            value: 38.266
          - type: precision_at_1
            value: 23.724999999999998
          - type: precision_at_10
            value: 6.553000000000001
          - type: precision_at_100
            value: 0.942
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.532
          - type: precision_at_5
            value: 10.696
          - type: recall_at_1
            value: 23.083000000000002
          - type: recall_at_10
            value: 62.739
          - type: recall_at_100
            value: 89.212
          - type: recall_at_1000
            value: 97.991
          - type: recall_at_3
            value: 42.064
          - type: recall_at_5
            value: 51.417
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.43365253077975
          - type: f1
            value: 93.07455671032345
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.72822617419061
          - type: f1
            value: 55.6093871673643
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 72.03765971755212
          - type: f1
            value: 70.88235592002572
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.86281102891728
          - type: f1
            value: 77.15496923811003
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 41.8
          - type: map_at_10
            value: 46.993
          - type: map_at_100
            value: 47.534
          - type: map_at_1000
            value: 47.587
          - type: map_at_3
            value: 45.717
          - type: map_at_5
            value: 46.357
          - type: mrr_at_1
            value: 42
          - type: mrr_at_10
            value: 47.093
          - type: mrr_at_100
            value: 47.634
          - type: mrr_at_1000
            value: 47.687000000000005
          - type: mrr_at_3
            value: 45.817
          - type: mrr_at_5
            value: 46.457
          - type: ndcg_at_1
            value: 41.8
          - type: ndcg_at_10
            value: 49.631
          - type: ndcg_at_100
            value: 52.53
          - type: ndcg_at_1000
            value: 54.238
          - type: ndcg_at_3
            value: 46.949000000000005
          - type: ndcg_at_5
            value: 48.102000000000004
          - type: precision_at_1
            value: 41.8
          - type: precision_at_10
            value: 5.800000000000001
          - type: precision_at_100
            value: 0.722
          - type: precision_at_1000
            value: 0.086
          - type: precision_at_3
            value: 16.833000000000002
          - type: precision_at_5
            value: 10.66
          - type: recall_at_1
            value: 41.8
          - type: recall_at_10
            value: 57.99999999999999
          - type: recall_at_100
            value: 72.2
          - type: recall_at_1000
            value: 86.3
          - type: recall_at_3
            value: 50.5
          - type: recall_at_5
            value: 53.300000000000004
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.949060810392886
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.87339864059011
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.217934626189926
          - type: mrr
            value: 32.27509143911496
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 26.691638884089574
          - type: mrr
            value: 25.15674603174603
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 68.35666666666667
          - type: f1
            value: 68.30294399725629
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.759
          - type: map_at_10
            value: 13.425999999999998
          - type: map_at_100
            value: 16.988
          - type: map_at_1000
            value: 18.512
          - type: map_at_3
            value: 9.737
          - type: map_at_5
            value: 11.558
          - type: mrr_at_1
            value: 48.297000000000004
          - type: mrr_at_10
            value: 56.788000000000004
          - type: mrr_at_100
            value: 57.306000000000004
          - type: mrr_at_1000
            value: 57.349000000000004
          - type: mrr_at_3
            value: 54.386
          - type: mrr_at_5
            value: 56.135000000000005
          - type: ndcg_at_1
            value: 46.285
          - type: ndcg_at_10
            value: 36.016
          - type: ndcg_at_100
            value: 32.984
          - type: ndcg_at_1000
            value: 42.093
          - type: ndcg_at_3
            value: 41.743
          - type: ndcg_at_5
            value: 39.734
          - type: precision_at_1
            value: 48.297000000000004
          - type: precision_at_10
            value: 26.779999999999998
          - type: precision_at_100
            value: 8.505
          - type: precision_at_1000
            value: 2.1420000000000003
          - type: precision_at_3
            value: 39.422000000000004
          - type: precision_at_5
            value: 34.675
          - type: recall_at_1
            value: 5.759
          - type: recall_at_10
            value: 17.251
          - type: recall_at_100
            value: 33.323
          - type: recall_at_1000
            value: 66.759
          - type: recall_at_3
            value: 10.703
          - type: recall_at_5
            value: 13.808000000000002
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.696999999999996
          - type: map_at_10
            value: 46.099000000000004
          - type: map_at_100
            value: 47.143
          - type: map_at_1000
            value: 47.178
          - type: map_at_3
            value: 41.948
          - type: map_at_5
            value: 44.504
          - type: mrr_at_1
            value: 35.717999999999996
          - type: mrr_at_10
            value: 48.653
          - type: mrr_at_100
            value: 49.456
          - type: mrr_at_1000
            value: 49.479
          - type: mrr_at_3
            value: 45.283
          - type: mrr_at_5
            value: 47.422
          - type: ndcg_at_1
            value: 35.689
          - type: ndcg_at_10
            value: 53.312000000000005
          - type: ndcg_at_100
            value: 57.69
          - type: ndcg_at_1000
            value: 58.489000000000004
          - type: ndcg_at_3
            value: 45.678999999999995
          - type: ndcg_at_5
            value: 49.897000000000006
          - type: precision_at_1
            value: 35.689
          - type: precision_at_10
            value: 8.685
          - type: precision_at_100
            value: 1.111
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 20.558
          - type: precision_at_5
            value: 14.802999999999999
          - type: recall_at_1
            value: 31.696999999999996
          - type: recall_at_10
            value: 72.615
          - type: recall_at_100
            value: 91.563
          - type: recall_at_1000
            value: 97.52300000000001
          - type: recall_at_3
            value: 53.203
          - type: recall_at_5
            value: 62.836000000000006
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 67.94802382241473
          - type: cos_sim_ap
            value: 72.1545049768353
          - type: cos_sim_f1
            value: 71.24658780709737
          - type: cos_sim_precision
            value: 62.589928057553955
          - type: cos_sim_recall
            value: 82.68215417106653
          - type: dot_accuracy
            value: 63.56253383865729
          - type: dot_ap
            value: 66.5298825401086
          - type: dot_f1
            value: 69.31953840031835
          - type: dot_precision
            value: 55.61941251596424
          - type: dot_recall
            value: 91.97465681098205
          - type: euclidean_accuracy
            value: 69.46399566865186
          - type: euclidean_ap
            value: 73.63177936887436
          - type: euclidean_f1
            value: 72.91028446389497
          - type: euclidean_precision
            value: 62.25710014947683
          - type: euclidean_recall
            value: 87.96198521647307
          - type: manhattan_accuracy
            value: 69.89713048186248
          - type: manhattan_ap
            value: 74.11555425121965
          - type: manhattan_f1
            value: 72.8923476005188
          - type: manhattan_precision
            value: 61.71303074670571
          - type: manhattan_recall
            value: 89.01795142555439
          - type: max_accuracy
            value: 69.89713048186248
          - type: max_ap
            value: 74.11555425121965
          - type: max_f1
            value: 72.91028446389497
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 90.93
          - type: ap
            value: 88.66185083484555
          - type: f1
            value: 90.91685771516175
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 14.385178129184318
          - type: cos_sim_spearman
            value: 17.246549728263478
          - type: euclidean_pearson
            value: 18.921969136664913
          - type: euclidean_spearman
            value: 17.245713577354014
          - type: manhattan_pearson
            value: 18.98503959815216
          - type: manhattan_spearman
            value: 17.37740013639568
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 32.04198138050403
          - type: cos_sim_spearman
            value: 34.4844617563846
          - type: euclidean_pearson
            value: 34.2634608256121
          - type: euclidean_spearman
            value: 36.322207068208066
          - type: manhattan_pearson
            value: 34.414939622012284
          - type: manhattan_spearman
            value: 36.49437789416394
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.858
          - type: map_at_10
            value: 84.516
          - type: map_at_100
            value: 85.138
          - type: map_at_1000
            value: 85.153
          - type: map_at_3
            value: 81.487
          - type: map_at_5
            value: 83.41199999999999
          - type: mrr_at_1
            value: 81.55
          - type: mrr_at_10
            value: 87.51400000000001
          - type: mrr_at_100
            value: 87.607
          - type: mrr_at_1000
            value: 87.60900000000001
          - type: mrr_at_3
            value: 86.49
          - type: mrr_at_5
            value: 87.21
          - type: ndcg_at_1
            value: 81.57
          - type: ndcg_at_10
            value: 88.276
          - type: ndcg_at_100
            value: 89.462
          - type: ndcg_at_1000
            value: 89.571
          - type: ndcg_at_3
            value: 85.294
          - type: ndcg_at_5
            value: 86.979
          - type: precision_at_1
            value: 81.57
          - type: precision_at_10
            value: 13.389999999999999
          - type: precision_at_100
            value: 1.532
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.2
          - type: precision_at_5
            value: 24.544
          - type: recall_at_1
            value: 70.858
          - type: recall_at_10
            value: 95.428
          - type: recall_at_100
            value: 99.46000000000001
          - type: recall_at_1000
            value: 99.98
          - type: recall_at_3
            value: 86.896
          - type: recall_at_5
            value: 91.617
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 47.90089115942085
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 55.948584594903515
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.513
          - type: map_at_10
            value: 11.189
          - type: map_at_100
            value: 13.034
          - type: map_at_1000
            value: 13.312
          - type: map_at_3
            value: 8.124
          - type: map_at_5
            value: 9.719999999999999
          - type: mrr_at_1
            value: 22.1
          - type: mrr_at_10
            value: 32.879999999999995
          - type: mrr_at_100
            value: 33.916000000000004
          - type: mrr_at_1000
            value: 33.982
          - type: mrr_at_3
            value: 29.633
          - type: mrr_at_5
            value: 31.663000000000004
          - type: ndcg_at_1
            value: 22.1
          - type: ndcg_at_10
            value: 18.944
          - type: ndcg_at_100
            value: 26.240000000000002
          - type: ndcg_at_1000
            value: 31.282
          - type: ndcg_at_3
            value: 18.17
          - type: ndcg_at_5
            value: 15.976
          - type: precision_at_1
            value: 22.1
          - type: precision_at_10
            value: 9.700000000000001
          - type: precision_at_100
            value: 2.025
          - type: precision_at_1000
            value: 0.32299999999999995
          - type: precision_at_3
            value: 16.933
          - type: precision_at_5
            value: 14.02
          - type: recall_at_1
            value: 4.513
          - type: recall_at_10
            value: 19.723
          - type: recall_at_100
            value: 41.117
          - type: recall_at_1000
            value: 65.718
          - type: recall_at_3
            value: 10.333
          - type: recall_at_5
            value: 14.252
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.93526522406187
          - type: cos_sim_spearman
            value: 81.4067321748142
          - type: euclidean_pearson
            value: 82.23783344725466
          - type: euclidean_spearman
            value: 80.88990344685583
          - type: manhattan_pearson
            value: 82.3367264631989
          - type: manhattan_spearman
            value: 80.9278067738814
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 85.23458296088118
          - type: cos_sim_spearman
            value: 77.47310329678291
          - type: euclidean_pearson
            value: 83.73584591194671
          - type: euclidean_spearman
            value: 80.15616176452284
          - type: manhattan_pearson
            value: 84.03063128849925
          - type: manhattan_spearman
            value: 80.36472448270416
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 86.11807249122802
          - type: cos_sim_spearman
            value: 86.37854318479079
          - type: euclidean_pearson
            value: 86.65850909046301
          - type: euclidean_spearman
            value: 87.85344963531178
          - type: manhattan_pearson
            value: 86.77920459868837
          - type: manhattan_spearman
            value: 87.97331161741792
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 84.4649953305265
          - type: cos_sim_spearman
            value: 81.17166984686445
          - type: euclidean_pearson
            value: 82.36880883967271
          - type: euclidean_spearman
            value: 81.28206358558401
          - type: manhattan_pearson
            value: 82.56994704487155
          - type: manhattan_spearman
            value: 81.52094918949243
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.5328930220188
          - type: cos_sim_spearman
            value: 88.23398394823562
          - type: euclidean_pearson
            value: 88.0817998861656
          - type: euclidean_spearman
            value: 88.68995789914679
          - type: manhattan_pearson
            value: 88.11885742601258
          - type: manhattan_spearman
            value: 88.7318106493293
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.81883368511858
          - type: cos_sim_spearman
            value: 86.28679308000675
          - type: euclidean_pearson
            value: 84.33705182713047
          - type: euclidean_spearman
            value: 84.83018555455023
          - type: manhattan_pearson
            value: 84.3271850394614
          - type: manhattan_spearman
            value: 84.77974015415639
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 90.71845282522295
          - type: cos_sim_spearman
            value: 90.6215253553308
          - type: euclidean_pearson
            value: 89.486847313806
          - type: euclidean_spearman
            value: 89.11692037511729
          - type: manhattan_pearson
            value: 89.53911733450684
          - type: manhattan_spearman
            value: 89.2507288145461
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.81961557635002
          - type: cos_sim_spearman
            value: 65.01437718770094
          - type: euclidean_pearson
            value: 66.53720271639384
          - type: euclidean_spearman
            value: 65.66538718470727
          - type: manhattan_pearson
            value: 66.85160833477023
          - type: manhattan_spearman
            value: 65.86253623736344
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 81.74904608584143
          - type: cos_sim_spearman
            value: 82.02672847550606
          - type: euclidean_pearson
            value: 81.47843718306068
          - type: euclidean_spearman
            value: 81.7259314292303
          - type: manhattan_pearson
            value: 81.70320276859634
          - type: manhattan_spearman
            value: 81.94903024173293
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.37129233774877
          - type: cos_sim_spearman
            value: 88.02311088852667
          - type: euclidean_pearson
            value: 85.864664021262
          - type: euclidean_spearman
            value: 86.24775921494894
          - type: manhattan_pearson
            value: 85.85401868812795
          - type: manhattan_spearman
            value: 86.22999105137849
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 80.2684105571225
          - type: mrr
            value: 94.3528194753685
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 55.161
          - type: map_at_10
            value: 64.794
          - type: map_at_100
            value: 65.66499999999999
          - type: map_at_1000
            value: 65.684
          - type: map_at_3
            value: 62.326
          - type: map_at_5
            value: 63.863
          - type: mrr_at_1
            value: 58.333
          - type: mrr_at_10
            value: 66.396
          - type: mrr_at_100
            value: 67.07300000000001
          - type: mrr_at_1000
            value: 67.092
          - type: mrr_at_3
            value: 64.61099999999999
          - type: mrr_at_5
            value: 65.744
          - type: ndcg_at_1
            value: 58.333
          - type: ndcg_at_10
            value: 69.294
          - type: ndcg_at_100
            value: 72.612
          - type: ndcg_at_1000
            value: 73.083
          - type: ndcg_at_3
            value: 65.226
          - type: ndcg_at_5
            value: 67.44
          - type: precision_at_1
            value: 58.333
          - type: precision_at_10
            value: 9.2
          - type: precision_at_100
            value: 1.083
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 25.667
          - type: precision_at_5
            value: 16.866999999999997
          - type: recall_at_1
            value: 55.161
          - type: recall_at_10
            value: 81.289
          - type: recall_at_100
            value: 95.333
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 70.45
          - type: recall_at_5
            value: 76.128
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81980198019802
          - type: cos_sim_ap
            value: 95.61939598272275
          - type: cos_sim_f1
            value: 91.00684261974584
          - type: cos_sim_precision
            value: 89.0057361376673
          - type: cos_sim_recall
            value: 93.10000000000001
          - type: dot_accuracy
            value: 99.78910891089109
          - type: dot_ap
            value: 94.52852299178002
          - type: dot_f1
            value: 89.2586989409985
          - type: dot_precision
            value: 90.03051881993896
          - type: dot_recall
            value: 88.5
          - type: euclidean_accuracy
            value: 99.81782178217821
          - type: euclidean_ap
            value: 95.41313424258671
          - type: euclidean_f1
            value: 90.91806515301086
          - type: euclidean_precision
            value: 89.76608187134502
          - type: euclidean_recall
            value: 92.10000000000001
          - type: manhattan_accuracy
            value: 99.81584158415842
          - type: manhattan_ap
            value: 95.52722650384223
          - type: manhattan_f1
            value: 90.86444007858546
          - type: manhattan_precision
            value: 89.28571428571429
          - type: manhattan_recall
            value: 92.5
          - type: max_accuracy
            value: 99.81980198019802
          - type: max_ap
            value: 95.61939598272275
          - type: max_f1
            value: 91.00684261974584
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 60.2736951820551
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.34316824844043
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 50.55034024386463
          - type: mrr
            value: 51.468598803157626
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.20772719310616
          - type: cos_sim_spearman
            value: 30.966269993937523
          - type: dot_pearson
            value: 30.866563682880965
          - type: dot_spearman
            value: 29.906699130890875
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 67.87990805824984
          - type: mrr
            value: 78.16078682657897
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.009
          - type: map_at_10
            value: 71.319
          - type: map_at_100
            value: 74.895
          - type: map_at_1000
            value: 74.995
          - type: map_at_3
            value: 50.778
          - type: map_at_5
            value: 62.00599999999999
          - type: mrr_at_1
            value: 87.41
          - type: mrr_at_10
            value: 90.18599999999999
          - type: mrr_at_100
            value: 90.29700000000001
          - type: mrr_at_1000
            value: 90.302
          - type: mrr_at_3
            value: 89.701
          - type: mrr_at_5
            value: 89.992
          - type: ndcg_at_1
            value: 87.41
          - type: ndcg_at_10
            value: 79.822
          - type: ndcg_at_100
            value: 83.877
          - type: ndcg_at_1000
            value: 84.882
          - type: ndcg_at_3
            value: 82.391
          - type: ndcg_at_5
            value: 80.339
          - type: precision_at_1
            value: 87.41
          - type: precision_at_10
            value: 39.546
          - type: precision_at_100
            value: 4.824
          - type: precision_at_1000
            value: 0.507
          - type: precision_at_3
            value: 72.129
          - type: precision_at_5
            value: 59.915
          - type: recall_at_1
            value: 26.009
          - type: recall_at_10
            value: 78.144
          - type: recall_at_100
            value: 91.375
          - type: recall_at_1000
            value: 96.42399999999999
          - type: recall_at_3
            value: 52.529
          - type: recall_at_5
            value: 65.46
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 47.803000000000004
          - type: f1
            value: 46.298520969605775
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.252
          - type: map_at_10
            value: 2.181
          - type: map_at_100
            value: 12.82
          - type: map_at_1000
            value: 30.307000000000002
          - type: map_at_3
            value: 0.716
          - type: map_at_5
            value: 1.133
          - type: mrr_at_1
            value: 96
          - type: mrr_at_10
            value: 98
          - type: mrr_at_100
            value: 98
          - type: mrr_at_1000
            value: 98
          - type: mrr_at_3
            value: 98
          - type: mrr_at_5
            value: 98
          - type: ndcg_at_1
            value: 92
          - type: ndcg_at_10
            value: 83.818
          - type: ndcg_at_100
            value: 63.327999999999996
          - type: ndcg_at_1000
            value: 55.883
          - type: ndcg_at_3
            value: 87.16199999999999
          - type: ndcg_at_5
            value: 85.03
          - type: precision_at_1
            value: 96
          - type: precision_at_10
            value: 88
          - type: precision_at_100
            value: 64.94
          - type: precision_at_1000
            value: 24.688
          - type: precision_at_3
            value: 91.333
          - type: precision_at_5
            value: 88.8
          - type: recall_at_1
            value: 0.252
          - type: recall_at_10
            value: 2.326
          - type: recall_at_100
            value: 15.665000000000001
          - type: recall_at_1000
            value: 52.559999999999995
          - type: recall_at_3
            value: 0.735
          - type: recall_at_5
            value: 1.175
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (sqi-eng)
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19
          - type: f1
            value: 15.331629955575188
          - type: precision
            value: 14.38509724403208
          - type: recall
            value: 19
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fry-eng)
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 39.884393063583815
          - type: f1
            value: 32.369942196531795
          - type: precision
            value: 30.036929993577395
          - type: recall
            value: 39.884393063583815
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kur-eng)
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.365853658536585
          - type: f1
            value: 12.49755078527547
          - type: precision
            value: 11.840415442997939
          - type: recall
            value: 15.365853658536585
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tur-eng)
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.1
          - type: f1
            value: 8.955359175928436
          - type: precision
            value: 8.324461412770235
          - type: recall
            value: 11.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (deu-eng)
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.7
          - type: f1
            value: 85.06214285714286
          - type: precision
            value: 83.98761904761905
          - type: recall
            value: 87.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nld-eng)
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 56.00000000000001
          - type: f1
            value: 49.8456850459482
          - type: precision
            value: 47.80084415584415
          - type: recall
            value: 56.00000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ron-eng)
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.1
          - type: f1
            value: 33.85465329991646
          - type: precision
            value: 32.37519841269841
          - type: recall
            value: 38.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ang-eng)
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 42.53731343283582
          - type: f1
            value: 34.67903986560703
          - type: precision
            value: 32.17128642501776
          - type: recall
            value: 42.53731343283582
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ido-eng)
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 53.900000000000006
          - type: f1
            value: 47.83909812409812
          - type: precision
            value: 45.67887667887668
          - type: recall
            value: 53.900000000000006
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jav-eng)
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 26.34146341463415
          - type: f1
            value: 22.264125162260022
          - type: precision
            value: 21.384015912351636
          - type: recall
            value: 26.34146341463415
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (isl-eng)
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.2
          - type: f1
            value: 8.001233870597419
          - type: precision
            value: 7.383838204560821
          - type: recall
            value: 10.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slv-eng)
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 17.253948967193196
          - type: f1
            value: 13.055189087650387
          - type: precision
            value: 12.105642744272275
          - type: recall
            value: 17.253948967193196
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cym-eng)
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.26086956521739
          - type: f1
            value: 8.31837824011737
          - type: precision
            value: 7.879315672736052
          - type: recall
            value: 10.26086956521739
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kaz-eng)
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.826086956521738
          - type: f1
            value: 9.663030581871162
          - type: precision
            value: 9.152605557273077
          - type: recall
            value: 11.826086956521738
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (est-eng)
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.800000000000001
          - type: f1
            value: 5.608697757594542
          - type: precision
            value: 5.333727335466467
          - type: recall
            value: 6.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (heb-eng)
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.3
          - type: f1
            value: 7.4866384899217335
          - type: precision
            value: 6.580321536442861
          - type: recall
            value: 11.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gla-eng)
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.101326899879373
          - type: f1
            value: 3.0988364784130122
          - type: precision
            value: 2.925923150618102
          - type: recall
            value: 4.101326899879373
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mar-eng)
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.3
          - type: f1
            value: 71.55912698412699
          - type: precision
            value: 69.55511904761904
          - type: recall
            value: 76.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lat-eng)
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 53.6
          - type: f1
            value: 46.74811085685228
          - type: precision
            value: 44.41049616018656
          - type: recall
            value: 53.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bel-eng)
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.400000000000002
          - type: f1
            value: 18.485309948823105
          - type: precision
            value: 17.12104734130107
          - type: recall
            value: 23.400000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pms-eng)
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 41.523809523809526
          - type: f1
            value: 36.577269291555005
          - type: precision
            value: 35.00219198790627
          - type: recall
            value: 41.523809523809526
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gle-eng)
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.909842412258181
          - type: precision
            value: 3.7099694121032796
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pes-eng)
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 26.900000000000002
          - type: f1
            value: 21.587309161426806
          - type: precision
            value: 19.877234126984124
          - type: recall
            value: 26.900000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nob-eng)
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 37.3
          - type: f1
            value: 31.940531675926408
          - type: precision
            value: 30.414405457464277
          - type: recall
            value: 37.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bul-eng)
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 34.4
          - type: f1
            value: 28.460500740394355
          - type: precision
            value: 26.630818170746558
          - type: recall
            value: 34.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cbk-eng)
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 67.5
          - type: f1
            value: 61.492367158984806
          - type: precision
            value: 59.23266755904913
          - type: recall
            value: 67.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hun-eng)
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.9
          - type: f1
            value: 6.652063929922994
          - type: precision
            value: 6.392931096681097
          - type: recall
            value: 7.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uig-eng)
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 2.6
          - type: f1
            value: 2.0216271963330783
          - type: precision
            value: 1.9467343791901313
          - type: recall
            value: 2.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (rus-eng)
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.6
          - type: f1
            value: 71.23357142857142
          - type: precision
            value: 69.03261904761905
          - type: recall
            value: 76.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (spa-eng)
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 98.6
          - type: f1
            value: 98.13333333333333
          - type: precision
            value: 97.89999999999999
          - type: recall
            value: 98.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hye-eng)
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.8867924528301887
          - type: f1
            value: 0.9184016421339141
          - type: precision
            value: 0.8343646123610833
          - type: recall
            value: 1.8867924528301887
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tel-eng)
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84.1880341880342
          - type: f1
            value: 80.56369556369557
          - type: precision
            value: 79.02421652421653
          - type: recall
            value: 84.1880341880342
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (afr-eng)
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 27.200000000000003
          - type: f1
            value: 22.55873107448107
          - type: precision
            value: 21.13610950874723
          - type: recall
            value: 27.200000000000003
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mon-eng)
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.090909090909092
          - type: f1
            value: 7.37323521273764
          - type: precision
            value: 7.01229523252768
          - type: recall
            value: 9.090909090909092
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arz-eng)
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.24528301886792
          - type: f1
            value: 74.80483178596387
          - type: precision
            value: 72.8336827393431
          - type: recall
            value: 79.24528301886792
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hrv-eng)
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.3
          - type: f1
            value: 17.754399705471684
          - type: precision
            value: 16.81516621898026
          - type: recall
            value: 21.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nov-eng)
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 59.92217898832685
          - type: f1
            value: 54.92807451951421
          - type: precision
            value: 53.071150639244024
          - type: recall
            value: 59.92217898832685
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gsw-eng)
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 30.76923076923077
          - type: f1
            value: 23.70099036765703
          - type: precision
            value: 21.666666666666664
          - type: recall
            value: 30.76923076923077
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nds-eng)
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 35.6
          - type: f1
            value: 29.87713276919159
          - type: precision
            value: 28.07062211509473
          - type: recall
            value: 35.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ukr-eng)
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.1
          - type: f1
            value: 31.123585858585855
          - type: precision
            value: 28.995893769823304
          - type: recall
            value: 38.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uzb-eng)
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.74766355140187
          - type: f1
            value: 8.280338473537247
          - type: precision
            value: 7.806134675293554
          - type: recall
            value: 10.74766355140187
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lit-eng)
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.6
          - type: f1
            value: 5.872095040470223
          - type: precision
            value: 5.557777361527362
          - type: recall
            value: 7.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ina-eng)
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.8
          - type: f1
            value: 83.72833333333332
          - type: precision
            value: 82.4259523809524
          - type: recall
            value: 86.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lfn-eng)
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 52
          - type: f1
            value: 46.48058132211534
          - type: precision
            value: 44.52753032676945
          - type: recall
            value: 52
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (zsm-eng)
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.4
          - type: f1
            value: 88.10999999999999
          - type: precision
            value: 87.10333333333334
          - type: recall
            value: 90.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ita-eng)
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.5
          - type: f1
            value: 74.95746031746032
          - type: precision
            value: 73.03249999999998
          - type: recall
            value: 79.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cmn-eng)
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.7
          - type: f1
            value: 95.7
          - type: precision
            value: 95.21666666666667
          - type: recall
            value: 96.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lvs-eng)
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.7
          - type: f1
            value: 8.576412755390276
          - type: precision
            value: 8.046714349557488
          - type: recall
            value: 10.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (glg-eng)
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86
          - type: f1
            value: 82.54523809523809
          - type: precision
            value: 81.06166666666665
          - type: recall
            value: 86
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ceb-eng)
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11
          - type: f1
            value: 9.080509354193564
          - type: precision
            value: 8.57587968815845
          - type: recall
            value: 11
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bre-eng)
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.6
          - type: f1
            value: 7.409451659451658
          - type: precision
            value: 6.8121069441897415
          - type: recall
            value: 9.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ben-eng)
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.1
          - type: f1
            value: 83.88999999999999
          - type: precision
            value: 82.395
          - type: recall
            value: 87.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swg-eng)
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 34.82142857142857
          - type: f1
            value: 29.175170068027214
          - type: precision
            value: 27.40499084249084
          - type: recall
            value: 34.82142857142857
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arq-eng)
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 42.9198682766191
          - type: f1
            value: 37.21120707205811
          - type: precision
            value: 35.23526784229309
          - type: recall
            value: 42.9198682766191
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kab-eng)
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 2.3
          - type: f1
            value: 1.5401826425879608
          - type: precision
            value: 1.424235527544351
          - type: recall
            value: 2.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fra-eng)
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.6
          - type: f1
            value: 94.32333333333334
          - type: precision
            value: 93.72500000000001
          - type: recall
            value: 95.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (por-eng)
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.5
          - type: f1
            value: 94.43333333333334
          - type: precision
            value: 93.89999999999999
          - type: recall
            value: 95.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tat-eng)
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.7
          - type: f1
            value: 4.9622522983552395
          - type: precision
            value: 4.528962761017515
          - type: recall
            value: 6.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (oci-eng)
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 50.8
          - type: f1
            value: 45.736438587556236
          - type: precision
            value: 44.010822829131655
          - type: recall
            value: 50.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pol-eng)
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.9
          - type: f1
            value: 20.267261904761906
          - type: precision
            value: 19.16142408316321
          - type: recall
            value: 23.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (war-eng)
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 13.4
          - type: f1
            value: 11.232209832252995
          - type: precision
            value: 10.714445160103056
          - type: recall
            value: 13.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (aze-eng)
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.299999999999999
          - type: f1
            value: 8.161916387744503
          - type: precision
            value: 7.678631905405786
          - type: recall
            value: 10.299999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (vie-eng)
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.7
          - type: f1
            value: 95.83333333333334
          - type: precision
            value: 95.41666666666667
          - type: recall
            value: 96.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nno-eng)
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 24.9
          - type: f1
            value: 20.794749162495066
          - type: precision
            value: 19.575997295469914
          - type: recall
            value: 24.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cha-eng)
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.11678832116788
          - type: f1
            value: 26.960375391032326
          - type: precision
            value: 25.498078211502524
          - type: recall
            value: 32.11678832116788
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mhr-eng)
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.251889552842259
          - type: precision
            value: 2.9281137342615295
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dan-eng)
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.9
          - type: f1
            value: 33.59595154442981
          - type: precision
            value: 31.906759791342587
          - type: recall
            value: 38.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ell-eng)
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.900000000000002
          - type: f1
            value: 13.082818919542666
          - type: precision
            value: 12.125554724968518
          - type: recall
            value: 16.900000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (amh-eng)
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.5952380952380952
          - type: f1
            value: 0.09920634920634923
          - type: precision
            value: 0.05411255411255411
          - type: recall
            value: 0.5952380952380952
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pam-eng)
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.1
          - type: f1
            value: 7.033911671727207
          - type: precision
            value: 6.759952905986985
          - type: recall
            value: 8.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hsb-eng)
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.149068322981368
          - type: f1
            value: 13.314287609382625
          - type: precision
            value: 12.588291889534126
          - type: recall
            value: 16.149068322981368
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (srp-eng)
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 22.3
          - type: f1
            value: 18.754672526177103
          - type: precision
            value: 17.77463320976479
          - type: recall
            value: 22.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (epo-eng)
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 39.5
          - type: f1
            value: 33.91659439373835
          - type: precision
            value: 32.244738455988454
          - type: recall
            value: 39.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kzj-eng)
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.5
          - type: f1
            value: 6.300929449087343
          - type: precision
            value: 6.05555758176835
          - type: recall
            value: 7.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (awa-eng)
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.14285714285714
          - type: f1
            value: 53.011353725639445
          - type: precision
            value: 51.78829107400536
          - type: recall
            value: 57.14285714285714
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fao-eng)
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.030534351145036
          - type: f1
            value: 14.424487352192786
          - type: precision
            value: 13.98739301411057
          - type: recall
            value: 16.030534351145036
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mal-eng)
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.21542940320232
          - type: f1
            value: 95.0509461426492
          - type: precision
            value: 94.46870451237264
          - type: recall
            value: 96.21542940320232
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ile-eng)
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 69.1
          - type: f1
            value: 63.649573934837086
          - type: precision
            value: 61.44357142857143
          - type: recall
            value: 69.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bos-eng)
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.728813559322035
          - type: f1
            value: 19.281200536513545
          - type: precision
            value: 18.11042731593579
          - type: recall
            value: 23.728813559322035
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cor-eng)
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.8602777777777777
          - type: precision
            value: 3.553962393468025
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cat-eng)
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.10000000000001
          - type: f1
            value: 90.24190476190476
          - type: precision
            value: 89.41666666666667
          - type: recall
            value: 92.10000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (eus-eng)
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.8
          - type: f1
            value: 74.53390756302521
          - type: precision
            value: 72.79386904761904
          - type: recall
            value: 78.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yue-eng)
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.60000000000001
          - type: f1
            value: 89.39
          - type: precision
            value: 88.375
          - type: recall
            value: 91.60000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swe-eng)
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.4
          - type: f1
            value: 27.824399979105863
          - type: precision
            value: 26.434715247715246
          - type: recall
            value: 32.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dtp-eng)
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.800000000000001
          - type: f1
            value: 5.258204523374802
          - type: precision
            value: 4.940595825661615
          - type: recall
            value: 6.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kat-eng)
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 2.0107238605898123
          - type: f1
            value: 1.4770600435024532
          - type: precision
            value: 1.4215975441361408
          - type: recall
            value: 2.0107238605898123
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jpn-eng)
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.2
          - type: f1
            value: 83.88333333333333
          - type: precision
            value: 82.44166666666668
          - type: recall
            value: 87.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (csb-eng)
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.229249011857709
          - type: f1
            value: 11.043453048700425
          - type: precision
            value: 10.285902503293807
          - type: recall
            value: 14.229249011857709
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (xho-eng)
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.859154929577464
          - type: f1
            value: 7.960154086914651
          - type: precision
            value: 7.679678785726838
          - type: recall
            value: 9.859154929577464
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (orv-eng)
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.574850299401197
          - type: f1
            value: 8.435162337247867
          - type: precision
            value: 7.5408084342568324
          - type: recall
            value: 12.574850299401197
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ind-eng)
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.5
          - type: f1
            value: 91.90666666666665
          - type: precision
            value: 91.14166666666668
          - type: recall
            value: 93.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tuk-eng)
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.866995073891626
          - type: f1
            value: 6.8479221927497775
          - type: precision
            value: 6.431102386508143
          - type: recall
            value: 8.866995073891626
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (max-eng)
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 46.12676056338028
          - type: f1
            value: 41.447273383893105
          - type: precision
            value: 39.80374351371386
          - type: recall
            value: 46.12676056338028
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swh-eng)
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 35.38461538461539
          - type: f1
            value: 27.80912253371418
          - type: precision
            value: 25.588007434161277
          - type: recall
            value: 35.38461538461539
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hin-eng)
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.1
          - type: f1
            value: 94.88333333333333
          - type: precision
            value: 94.3
          - type: recall
            value: 96.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dsb-eng)
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.16283924843424
          - type: f1
            value: 15.00273275898725
          - type: precision
            value: 14.135773519036146
          - type: recall
            value: 18.16283924843424
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ber-eng)
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.4
          - type: f1
            value: 5.169780886652615
          - type: precision
            value: 4.901094815916798
          - type: recall
            value: 6.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tam-eng)
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.66775244299674
          - type: f1
            value: 81.86753528773072
          - type: precision
            value: 80.13029315960912
          - type: recall
            value: 85.66775244299674
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slk-eng)
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.7
          - type: f1
            value: 12.296409553542203
          - type: precision
            value: 11.643939628482972
          - type: recall
            value: 14.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tgl-eng)
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.000000000000002
          - type: f1
            value: 11.188658083109301
          - type: precision
            value: 10.439068547503426
          - type: recall
            value: 14.000000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ast-eng)
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.01574803149606
          - type: f1
            value: 68.3727034120735
          - type: precision
            value: 66.06299212598424
          - type: recall
            value: 74.01574803149606
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mkd-eng)
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.200000000000003
          - type: f1
            value: 15.584321026350167
          - type: precision
            value: 14.220359087863855
          - type: recall
            value: 20.200000000000003
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (khm-eng)
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.2465373961218837
          - type: f1
            value: 0.7009849184364421
          - type: precision
            value: 0.6369121979354991
          - type: recall
            value: 1.2465373961218837
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ces-eng)
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.5
          - type: f1
            value: 12.992671904350203
          - type: precision
            value: 12.323623108157992
          - type: recall
            value: 15.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tzl-eng)
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 37.5
          - type: f1
            value: 32.70299145299145
          - type: precision
            value: 31.066176470588236
          - type: recall
            value: 37.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (urd-eng)
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.2
          - type: f1
            value: 82.87166666666667
          - type: precision
            value: 81.44261904761906
          - type: recall
            value: 86.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ara-eng)
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.5
          - type: f1
            value: 90.61666666666667
          - type: precision
            value: 89.71666666666668
          - type: recall
            value: 92.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kor-eng)
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 51.7
          - type: f1
            value: 44.78806599832916
          - type: precision
            value: 42.26749389499389
          - type: recall
            value: 51.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yid-eng)
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.9433962264150944
          - type: f1
            value: 0.48704516529471925
          - type: precision
            value: 0.41179094097726165
          - type: recall
            value: 0.9433962264150944
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fin-eng)
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.800000000000001
          - type: f1
            value: 5.480668860234897
          - type: precision
            value: 5.195067371791852
          - type: recall
            value: 6.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tha-eng)
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.036496350364963
          - type: f1
            value: 6.784271238735886
          - type: precision
            value: 6.159462364744479
          - type: recall
            value: 10.036496350364963
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (wuu-eng)
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.3
          - type: f1
            value: 87.91499999999999
          - type: precision
            value: 86.82595238095237
          - type: recall
            value: 90.3
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 49.19154423543331
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 47.76345036893387
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.396
          - type: map_at_10
            value: 9.994
          - type: map_at_100
            value: 16.067999999999998
          - type: map_at_1000
            value: 17.59
          - type: map_at_3
            value: 4.733
          - type: map_at_5
            value: 6.7589999999999995
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 47.678
          - type: mrr_at_100
            value: 48.311
          - type: mrr_at_1000
            value: 48.317
          - type: mrr_at_3
            value: 43.878
          - type: mrr_at_5
            value: 46.224
          - type: ndcg_at_1
            value: 25.509999999999998
          - type: ndcg_at_10
            value: 25.189
          - type: ndcg_at_100
            value: 36.179
          - type: ndcg_at_1000
            value: 47.562
          - type: ndcg_at_3
            value: 26.858999999999998
          - type: ndcg_at_5
            value: 26.825
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 23.469
          - type: precision_at_100
            value: 7.550999999999999
          - type: precision_at_1000
            value: 1.51
          - type: precision_at_3
            value: 29.252
          - type: precision_at_5
            value: 28.571
          - type: recall_at_1
            value: 2.396
          - type: recall_at_10
            value: 16.551
          - type: recall_at_100
            value: 46.438
          - type: recall_at_1000
            value: 81.04
          - type: recall_at_3
            value: 6.145
          - type: recall_at_5
            value: 9.728
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.5842
          - type: ap
            value: 14.770823761227014
          - type: f1
            value: 55.22772349179383
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 62.13921901528015
          - type: f1
            value: 62.450042974251694
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 40.81463922932671
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.86755677415509
          - type: cos_sim_ap
            value: 73.8131664470889
          - type: cos_sim_f1
            value: 68.03196803196803
          - type: cos_sim_precision
            value: 64.58036984352773
          - type: cos_sim_recall
            value: 71.87335092348285
          - type: dot_accuracy
            value: 84.58604041246946
          - type: dot_ap
            value: 69.43165607336826
          - type: dot_f1
            value: 65.84285381207741
          - type: dot_precision
            value: 58.980785296574766
          - type: dot_recall
            value: 74.51187335092348
          - type: euclidean_accuracy
            value: 85.60529296060082
          - type: euclidean_ap
            value: 72.48939155702391
          - type: euclidean_f1
            value: 66.84775898259045
          - type: euclidean_precision
            value: 62.822000464144814
          - type: euclidean_recall
            value: 71.42480211081794
          - type: manhattan_accuracy
            value: 85.5456875484294
          - type: manhattan_ap
            value: 72.37178636434892
          - type: manhattan_f1
            value: 66.6751398068124
          - type: manhattan_precision
            value: 64.32074546346249
          - type: manhattan_recall
            value: 69.2084432717678
          - type: max_accuracy
            value: 85.86755677415509
          - type: max_ap
            value: 73.8131664470889
          - type: max_f1
            value: 68.03196803196803
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.39341017580627
          - type: cos_sim_ap
            value: 86.7769866448429
          - type: cos_sim_f1
            value: 79.26586570354536
          - type: cos_sim_precision
            value: 76.02149017390076
          - type: cos_sim_recall
            value: 82.79950723744996
          - type: dot_accuracy
            value: 89.15861373074087
          - type: dot_ap
            value: 85.15235322715995
          - type: dot_f1
            value: 78.97118887294403
          - type: dot_precision
            value: 75.6290083867785
          - type: dot_recall
            value: 82.62242069602709
          - type: euclidean_accuracy
            value: 89.0266620095471
          - type: euclidean_ap
            value: 86.18904940615533
          - type: euclidean_f1
            value: 78.37750135208222
          - type: euclidean_precision
            value: 73.70312605953754
          - type: euclidean_recall
            value: 83.68493994456422
          - type: manhattan_accuracy
            value: 88.98397174680794
          - type: manhattan_ap
            value: 86.18302538523727
          - type: manhattan_f1
            value: 78.42197035745423
          - type: manhattan_precision
            value: 74.23658872077029
          - type: manhattan_recall
            value: 83.10748383122882
          - type: max_accuracy
            value: 89.39341017580627
          - type: max_ap
            value: 86.7769866448429
          - type: max_f1
            value: 79.26586570354536
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 46.9
          - type: map_at_10
            value: 57.399
          - type: map_at_100
            value: 57.976000000000006
          - type: map_at_1000
            value: 58.00300000000001
          - type: map_at_3
            value: 54.967
          - type: map_at_5
            value: 56.562
          - type: mrr_at_1
            value: 46.800000000000004
          - type: mrr_at_10
            value: 57.349000000000004
          - type: mrr_at_100
            value: 57.926
          - type: mrr_at_1000
            value: 57.952999999999996
          - type: mrr_at_3
            value: 54.917
          - type: mrr_at_5
            value: 56.51199999999999
          - type: ndcg_at_1
            value: 46.9
          - type: ndcg_at_10
            value: 62.437
          - type: ndcg_at_100
            value: 65.273
          - type: ndcg_at_1000
            value: 65.999
          - type: ndcg_at_3
            value: 57.524
          - type: ndcg_at_5
            value: 60.402
          - type: precision_at_1
            value: 46.9
          - type: precision_at_10
            value: 7.82
          - type: precision_at_100
            value: 0.915
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.633
          - type: precision_at_5
            value: 14.38
          - type: recall_at_1
            value: 46.9
          - type: recall_at_10
            value: 78.2
          - type: recall_at_100
            value: 91.5
          - type: recall_at_1000
            value: 97.2
          - type: recall_at_3
            value: 64.9
          - type: recall_at_5
            value: 71.89999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 84.68
          - type: ap
            value: 66.4749730574293
          - type: f1
            value: 82.93606561551698

Model Card for udever-bloom

udever-bloom-7b1 is finetuned from bigscience/bloom-7b1 via BitFit on MS MARCO Passage Ranking, SNLI and MultiNLI data. It is a universal embedding model across tasks, natural and programming languages. (From the technical view, udever is merely with some minor improvements to sgpt-bloom)

Model Details

Model Description

Model Sources

Checkpoints

On ModelScope / 魔搭社区: udever-bloom-560m, udever-bloom-1b1, udever-bloom-3b, udever-bloom-7b1

How to Get Started with the Model

Use the code below to get started with the model.

import torch
from transformers import AutoTokenizer, BloomModel

tokenizer = AutoTokenizer.from_pretrained('izhx/udever-bloom-7b1')
model = BloomModel.from_pretrained('izhx/udever-bloom-7b1')

boq, eoq, bod, eod = '[BOQ]', '[EOQ]', '[BOD]', '[EOD]'
eoq_id, eod_id = tokenizer.convert_tokens_to_ids([eoq, eod])

if tokenizer.padding_side != 'left':
    print('!!!', tokenizer.padding_side)
    tokenizer.padding_side = 'left'


def encode(texts: list, is_query: bool = True, max_length=300):
    bos = boq if is_query else bod
    eos_id = eoq_id if is_query else eod_id
    texts = [bos + t for t in texts]
    encoding = tokenizer(
        texts, truncation=True, max_length=max_length - 1, padding=True
    )
    for ids, mask in zip(encoding['input_ids'], encoding['attention_mask']):
        ids.append(eos_id)
        mask.append(1)
    inputs = tokenizer.pad(encoding, return_tensors='pt')
    with torch.inference_mode():
        outputs = model(**inputs)
        embeds = outputs.last_hidden_state[:, -1]
    return embeds

encode(['I am Bert', 'You are Elmo'])

Training Details

Training Data

Training Procedure

Preprocessing

MS MARCO hard negatives provided by (https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_mnrl.py#L86). Negatives for SNLI and MultiNLI are randomly sampled.

Training Hyperparameters

  • Training regime: tf32, BitFit
  • Batch size: 1024
  • Epochs: 3
  • Optimizer: AdamW
  • Learning rate: 1e-4
  • Scheduler: constant with warmup.
  • Warmup: 0.25 epoch

Evaluation

Table 1: Massive Text Embedding Benchmark MTEB

MTEB Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets ➡️ 56 12 11 3 4 15 10 1
bge-large-en-v1.5 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
bge-base-en-v1.5 63.55 75.53 45.77 86.55 58.86 53.25 82.4 31.07
gte-large 63.13 73.33 46.84 85 59.13 52.22 83.35 31.66
gte-base 62.39 73.01 46.2 84.57 58.61 51.14 82.3 31.17
e5-large-v2 62.25 75.24 44.49 86.03 56.61 50.56 82.05 30.19
instructor-xl 61.79 73.12 44.74 86.62 57.29 49.26 83.06 32.32
instructor-large 61.59 73.86 45.29 85.89 57.54 47.57 83.15 31.84
e5-base-v2 61.5 73.84 43.8 85.73 55.91 50.29 81.05 30.28
e5-large 61.42 73.14 43.33 85.94 56.53 49.99 82.06 30.97
text-embedding-ada-002 (OpenAI API) 60.99 70.93 45.9 84.89 56.32 49.25 80.97 30.8
e5-base 60.44 72.63 42.11 85.09 55.7 48.75 80.96 31.01
SGPT-5.8B-msmarco 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6
Udever-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
Udever-bloom-1b1 58.28 70.18 39.11 83.11 54.28 45.27 81.52 31.10
Udever-bloom-3b 59.86 71.91 40.74 84.06 54.90 47.67 82.37 30.62
Udever-bloom-7b1 60.63 72.13 40.81 85.40 55.91 49.34 83.01 30.97

Table 2: CodeSearchNet

CodeSearchNet Go Ruby Python Java JS PHP Avg.
CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24
Udever-bloom-560m 75.38 66.67 96.23 78.99 69.39 73.69 76.73
Udever-bloom-1b1 78.76 72.85 97.67 82.77 74.38 78.97 80.90
Udever-bloom-3b 80.63 75.40 98.02 83.88 76.18 79.67 82.29
Udever-bloom-7b1 79.37 76.59 98.38 84.68 77.49 80.03 82.76

Table 3: Chinese multi-domain retrieval Multi-cpr

E-commerce Entertainment video Medical
Model Train Backbone MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k
BM25 - - 0.225 0.815 0.225 0.780 0.187 0.482
Doc2Query - - 0.239 0.826 0.238 0.794 0.210 0.505
DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769
text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675
Udever-bloom-560m General BLOOM 0.156 0.802 0.149 0.749 0.245 0.571
Udever-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
Udever-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
Udever-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

More results refer to paper section 3.

Technical Specifications

Model Architecture and Objective

Compute Infrastructure

  • Nvidia A100 SXM4 80GB.
  • torch 2.0.0, transformers 4.29.2.

Citation

BibTeX:

@article{zhang2023language,
  title={Language Models are Universal Embedders},
  author={Zhang, Xin and Li, Zehan and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Zhang, Min},
  journal={arXiv preprint arXiv:2310.08232},
  year={2023}
}