|
--- |
|
library_name: peft |
|
license: bigscience-openrail-m |
|
tags: |
|
- paper |
|
- paper extract |
|
--- |
|
## Training procedure |
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0 |
|
|
|
in https://github.com/hiyouga/ChatGLM-Efficient-Tuning/tree/main |
|
|
|
CUDA_VISIBLE_DEVICES=3 nohup python src/web_demo.py \ |
|
--model_name_or_path /HOME/jack/model/chatglm-6b \ |
|
--checkpoint_dir paper_meta\ \ |
|
> log_web_demo.txt 2>&1 & tail -f log_web_demo.txt |
|
|
|
|
|
|
|
### 🚩Citation |
|
|
|
Please cite the following paper if you use jackkuo/PaperExtractGPT in your work. |
|
|
|
```bibtex |
|
@INPROCEEDINGS{10412837, |
|
author={Guo, Menghao and Wu, Fan and Jiang, Jinling and Yan, Xiaoran and Chen, Guangyong and Li, Wenhui and Zhao, Yunhong and Sun, Zeyi}, |
|
booktitle={2023 IEEE International Conference on Knowledge Graph (ICKG)}, |
|
title={Investigations on Scientific Literature Meta Information Extraction Using Large Language Models}, |
|
year={2023}, |
|
volume={}, |
|
number={}, |
|
pages={249-254}, |
|
keywords={Measurement;Knowledge graphs;Information retrieval;Data mining;Task analysis;information extraction;large language model;scientific literature}, |
|
doi={10.1109/ICKG59574.2023.00036}} |
|
``` |