jaggernaut007's picture
End of training
be193b9 verified
|
raw
history blame
2.62 kB
metadata
license: apache-2.0
base_model: surrey-nlp/albert-large-v2-finetuned-abbDet
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: albert-large-v2-finetuned-abbDet-finetuned-ner
    results: []

albert-large-v2-finetuned-abbDet-finetuned-ner

This model is a fine-tuned version of surrey-nlp/albert-large-v2-finetuned-abbDet on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0950
  • Precision: 0.9784
  • Recall: 0.9763
  • F1: 0.9773
  • Accuracy: 0.9757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.37 100 0.1655 0.9638 0.9621 0.9629 0.9622
No log 0.75 200 0.1073 0.9752 0.9705 0.9729 0.9709
No log 1.12 300 0.0951 0.9776 0.9742 0.9759 0.9740
No log 1.49 400 0.0952 0.9778 0.9752 0.9765 0.9748
0.1901 1.87 500 0.0948 0.9780 0.9745 0.9763 0.9746
0.1901 2.24 600 0.0947 0.9788 0.9758 0.9773 0.9755
0.1901 2.61 700 0.0962 0.9789 0.9766 0.9778 0.9758
0.1901 2.99 800 0.0950 0.9784 0.9763 0.9773 0.9757
0.1901 3.36 900 0.0984 0.9784 0.9763 0.9773 0.9755
0.0493 3.73 1000 0.1012 0.9781 0.9759 0.9770 0.9752
0.0493 4.1 1100 0.1029 0.9781 0.9763 0.9772 0.9754

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2