roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES-finetuned-ner
This model is a fine-tuned version of StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2282
- Precision: 0.9407
- Recall: 0.9284
- F1: 0.9345
- Accuracy: 0.9271
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.37 | 100 | 0.7545 | 0.7917 | 0.8473 | 0.8186 | 0.7901 |
No log | 0.75 | 200 | 0.5437 | 0.8113 | 0.8586 | 0.8343 | 0.8102 |
No log | 1.12 | 300 | 0.4143 | 0.8746 | 0.8822 | 0.8784 | 0.8678 |
No log | 1.49 | 400 | 0.3410 | 0.9114 | 0.8919 | 0.9015 | 0.8937 |
0.625 | 1.87 | 500 | 0.3050 | 0.9128 | 0.8935 | 0.9030 | 0.8958 |
0.625 | 2.24 | 600 | 0.2825 | 0.9171 | 0.9005 | 0.9087 | 0.9020 |
0.625 | 2.61 | 700 | 0.2688 | 0.9195 | 0.9060 | 0.9127 | 0.9059 |
0.625 | 2.99 | 800 | 0.2610 | 0.9244 | 0.9044 | 0.9143 | 0.9078 |
0.625 | 3.36 | 900 | 0.2537 | 0.9261 | 0.9070 | 0.9165 | 0.9099 |
0.2911 | 3.73 | 1000 | 0.2498 | 0.9285 | 0.9128 | 0.9206 | 0.9141 |
0.2911 | 4.1 | 1100 | 0.2437 | 0.9283 | 0.9150 | 0.9216 | 0.9154 |
0.2911 | 4.48 | 1200 | 0.2396 | 0.9295 | 0.9183 | 0.9239 | 0.9178 |
0.2911 | 4.85 | 1300 | 0.2385 | 0.9324 | 0.9198 | 0.9261 | 0.9195 |
0.2911 | 5.22 | 1400 | 0.2354 | 0.9344 | 0.9223 | 0.9283 | 0.9214 |
0.2505 | 5.6 | 1500 | 0.2343 | 0.9347 | 0.9223 | 0.9285 | 0.9216 |
0.2505 | 5.97 | 1600 | 0.2343 | 0.9362 | 0.9234 | 0.9297 | 0.9224 |
0.2505 | 6.34 | 1700 | 0.2318 | 0.9368 | 0.9251 | 0.9310 | 0.9238 |
0.2505 | 6.72 | 1800 | 0.2301 | 0.9375 | 0.9265 | 0.9319 | 0.9250 |
0.2505 | 7.09 | 1900 | 0.2304 | 0.9379 | 0.9263 | 0.9321 | 0.9250 |
0.2219 | 7.46 | 2000 | 0.2283 | 0.9387 | 0.9283 | 0.9335 | 0.9265 |
0.2219 | 7.84 | 2100 | 0.2305 | 0.9392 | 0.9265 | 0.9328 | 0.9254 |
0.2219 | 8.21 | 2200 | 0.2299 | 0.9398 | 0.9268 | 0.9332 | 0.9257 |
0.2219 | 8.58 | 2300 | 0.2289 | 0.9398 | 0.9277 | 0.9337 | 0.9264 |
0.2219 | 8.96 | 2400 | 0.2282 | 0.9407 | 0.9284 | 0.9345 | 0.9271 |
0.219 | 9.33 | 2500 | 0.2281 | 0.9407 | 0.9287 | 0.9347 | 0.9274 |
0.219 | 9.7 | 2600 | 0.2277 | 0.9403 | 0.9287 | 0.9345 | 0.9275 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.