test__1 / README.md
jamesgpt1's picture
Update README.md
45bbc40
metadata
tags:
  - ts
model-index:
  - name: new7
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 90.25373134328359
          - type: ap
            value: 65.16915484773354
          - type: f1
            value: 86.23066728099059
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.974875
          - type: ap
            value: 91.14317344009288
          - type: f1
            value: 93.9685240564202
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 55.77799999999999
          - type: f1
            value: 55.30626203111084
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.663
          - type: map_at_10
            value: 43.903
          - type: map_at_100
            value: 44.779
          - type: map_at_1000
            value: 44.799
          - type: map_at_3
            value: 39.486
          - type: map_at_5
            value: 42.199
          - type: mrr_at_1
            value: 28.663
          - type: mrr_at_10
            value: 43.903
          - type: mrr_at_100
            value: 44.779
          - type: mrr_at_1000
            value: 44.799
          - type: mrr_at_3
            value: 39.486
          - type: mrr_at_5
            value: 42.199
          - type: ndcg_at_1
            value: 28.663
          - type: ndcg_at_10
            value: 51.983999999999995
          - type: ndcg_at_100
            value: 55.981
          - type: ndcg_at_1000
            value: 56.474000000000004
          - type: ndcg_at_3
            value: 43.025000000000006
          - type: ndcg_at_5
            value: 47.916
          - type: precision_at_1
            value: 28.663
          - type: precision_at_10
            value: 7.76
          - type: precision_at_100
            value: 0.9570000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 17.757
          - type: precision_at_5
            value: 13.03
          - type: recall_at_1
            value: 28.663
          - type: recall_at_10
            value: 77.596
          - type: recall_at_100
            value: 95.661
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 53.272
          - type: recall_at_5
            value: 65.149
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 41.06284026514476
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 32.96711301401968
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 58.05094332005456
          - type: mrr
            value: 70.90808160752759
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 93.67415724859552
          - type: cos_sim_spearman
            value: 93.37019979249912
          - type: euclidean_pearson
            value: 91.767368542047
          - type: euclidean_spearman
            value: 92.75874007684216
          - type: manhattan_pearson
            value: 91.7931347639689
          - type: manhattan_spearman
            value: 92.94428647331738
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 91.6720779220779
          - type: f1
            value: 91.68597413806214
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 30.160011542775695
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 24.890267612946595
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.52
          - type: map_at_10
            value: 31.905
          - type: map_at_100
            value: 33.146
          - type: map_at_1000
            value: 33.315
          - type: map_at_3
            value: 29.567
          - type: map_at_5
            value: 30.729
          - type: mrr_at_1
            value: 28.469
          - type: mrr_at_10
            value: 37.884
          - type: mrr_at_100
            value: 38.757000000000005
          - type: mrr_at_1000
            value: 38.827
          - type: mrr_at_3
            value: 36.004000000000005
          - type: mrr_at_5
            value: 36.927
          - type: ndcg_at_1
            value: 28.469
          - type: ndcg_at_10
            value: 37.436
          - type: ndcg_at_100
            value: 42.754
          - type: ndcg_at_1000
            value: 45.744
          - type: ndcg_at_3
            value: 34.121
          - type: ndcg_at_5
            value: 35.315000000000005
          - type: precision_at_1
            value: 28.469
          - type: precision_at_10
            value: 7.167
          - type: precision_at_100
            value: 1.24
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 17.072000000000003
          - type: precision_at_5
            value: 11.731
          - type: recall_at_1
            value: 22.52
          - type: recall_at_10
            value: 47.61
          - type: recall_at_100
            value: 70.494
          - type: recall_at_1000
            value: 90.081
          - type: recall_at_3
            value: 37.012
          - type: recall_at_5
            value: 41.053
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.167
          - type: map_at_10
            value: 29.227999999999998
          - type: map_at_100
            value: 30.361
          - type: map_at_1000
            value: 30.483
          - type: map_at_3
            value: 27.046
          - type: map_at_5
            value: 28.253
          - type: mrr_at_1
            value: 27.961999999999996
          - type: mrr_at_10
            value: 34.474
          - type: mrr_at_100
            value: 35.257
          - type: mrr_at_1000
            value: 35.312
          - type: mrr_at_3
            value: 32.633
          - type: mrr_at_5
            value: 33.7
          - type: ndcg_at_1
            value: 27.961999999999996
          - type: ndcg_at_10
            value: 33.800000000000004
          - type: ndcg_at_100
            value: 38.435
          - type: ndcg_at_1000
            value: 40.753
          - type: ndcg_at_3
            value: 30.584
          - type: ndcg_at_5
            value: 32.036
          - type: precision_at_1
            value: 27.961999999999996
          - type: precision_at_10
            value: 6.338000000000001
          - type: precision_at_100
            value: 1.127
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_3
            value: 14.649999999999999
          - type: precision_at_5
            value: 10.408000000000001
          - type: recall_at_1
            value: 22.167
          - type: recall_at_10
            value: 41.735
          - type: recall_at_100
            value: 61.612
          - type: recall_at_1000
            value: 77.046
          - type: recall_at_3
            value: 31.985000000000003
          - type: recall_at_5
            value: 36.216
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.88
          - type: map_at_10
            value: 39.483000000000004
          - type: map_at_100
            value: 40.65
          - type: map_at_1000
            value: 40.727000000000004
          - type: map_at_3
            value: 36.095
          - type: map_at_5
            value: 38.138
          - type: mrr_at_1
            value: 33.292
          - type: mrr_at_10
            value: 42.655
          - type: mrr_at_100
            value: 43.505
          - type: mrr_at_1000
            value: 43.555
          - type: mrr_at_3
            value: 39.634
          - type: mrr_at_5
            value: 41.589999999999996
          - type: ndcg_at_1
            value: 33.292
          - type: ndcg_at_10
            value: 45.216
          - type: ndcg_at_100
            value: 50.029999999999994
          - type: ndcg_at_1000
            value: 51.795
          - type: ndcg_at_3
            value: 39.184000000000005
          - type: ndcg_at_5
            value: 42.416
          - type: precision_at_1
            value: 33.292
          - type: precision_at_10
            value: 7.661
          - type: precision_at_100
            value: 1.089
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 17.701
          - type: precision_at_5
            value: 12.878
          - type: recall_at_1
            value: 28.88
          - type: recall_at_10
            value: 59.148
          - type: recall_at_100
            value: 80.10300000000001
          - type: recall_at_1000
            value: 92.938
          - type: recall_at_3
            value: 43.262
          - type: recall_at_5
            value: 51.05800000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.732
          - type: map_at_10
            value: 24.104999999999997
          - type: map_at_100
            value: 25.085
          - type: map_at_1000
            value: 25.180000000000003
          - type: map_at_3
            value: 21.826999999999998
          - type: map_at_5
            value: 22.988
          - type: mrr_at_1
            value: 19.209
          - type: mrr_at_10
            value: 25.528000000000002
          - type: mrr_at_100
            value: 26.477
          - type: mrr_at_1000
            value: 26.56
          - type: mrr_at_3
            value: 23.315
          - type: mrr_at_5
            value: 24.427
          - type: ndcg_at_1
            value: 19.209
          - type: ndcg_at_10
            value: 28.055000000000003
          - type: ndcg_at_100
            value: 33.357
          - type: ndcg_at_1000
            value: 35.996
          - type: ndcg_at_3
            value: 23.526
          - type: ndcg_at_5
            value: 25.471
          - type: precision_at_1
            value: 19.209
          - type: precision_at_10
            value: 4.463
          - type: precision_at_100
            value: 0.756
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 9.981
          - type: precision_at_5
            value: 7.119000000000001
          - type: recall_at_1
            value: 17.732
          - type: recall_at_10
            value: 39.086999999999996
          - type: recall_at_100
            value: 64.264
          - type: recall_at_1000
            value: 84.589
          - type: recall_at_3
            value: 26.668999999999997
          - type: recall_at_5
            value: 31.361
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.99
          - type: map_at_10
            value: 16.661
          - type: map_at_100
            value: 17.763
          - type: map_at_1000
            value: 17.892
          - type: map_at_3
            value: 14.813
          - type: map_at_5
            value: 15.678
          - type: mrr_at_1
            value: 13.930000000000001
          - type: mrr_at_10
            value: 20.25
          - type: mrr_at_100
            value: 21.233
          - type: mrr_at_1000
            value: 21.325
          - type: mrr_at_3
            value: 18.262999999999998
          - type: mrr_at_5
            value: 19.177
          - type: ndcg_at_1
            value: 13.930000000000001
          - type: ndcg_at_10
            value: 20.558
          - type: ndcg_at_100
            value: 26.137
          - type: ndcg_at_1000
            value: 29.54
          - type: ndcg_at_3
            value: 17.015
          - type: ndcg_at_5
            value: 18.314
          - type: precision_at_1
            value: 13.930000000000001
          - type: precision_at_10
            value: 3.9050000000000002
          - type: precision_at_100
            value: 0.782
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 8.333
          - type: precision_at_5
            value: 5.92
          - type: recall_at_1
            value: 10.99
          - type: recall_at_10
            value: 29.156
          - type: recall_at_100
            value: 54.06100000000001
          - type: recall_at_1000
            value: 78.69699999999999
          - type: recall_at_3
            value: 19.11
          - type: recall_at_5
            value: 22.609
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.351
          - type: map_at_10
            value: 29.961
          - type: map_at_100
            value: 31.214
          - type: map_at_1000
            value: 31.349
          - type: map_at_3
            value: 27.283
          - type: map_at_5
            value: 28.851
          - type: mrr_at_1
            value: 25.602000000000004
          - type: mrr_at_10
            value: 34.554
          - type: mrr_at_100
            value: 35.423
          - type: mrr_at_1000
            value: 35.492000000000004
          - type: mrr_at_3
            value: 31.97
          - type: mrr_at_5
            value: 33.399
          - type: ndcg_at_1
            value: 25.602000000000004
          - type: ndcg_at_10
            value: 35.339999999999996
          - type: ndcg_at_100
            value: 40.89
          - type: ndcg_at_1000
            value: 43.732
          - type: ndcg_at_3
            value: 30.657
          - type: ndcg_at_5
            value: 32.945
          - type: precision_at_1
            value: 25.602000000000004
          - type: precision_at_10
            value: 6.574000000000001
          - type: precision_at_100
            value: 1.095
          - type: precision_at_1000
            value: 0.153
          - type: precision_at_3
            value: 14.629
          - type: precision_at_5
            value: 10.645
          - type: recall_at_1
            value: 21.351
          - type: recall_at_10
            value: 46.754
          - type: recall_at_100
            value: 70.247
          - type: recall_at_1000
            value: 89.653
          - type: recall_at_3
            value: 33.894000000000005
          - type: recall_at_5
            value: 39.667
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.052999999999997
          - type: map_at_10
            value: 24.291999999999998
          - type: map_at_100
            value: 25.348
          - type: map_at_1000
            value: 25.487
          - type: map_at_3
            value: 21.922
          - type: map_at_5
            value: 23.256
          - type: mrr_at_1
            value: 20.776
          - type: mrr_at_10
            value: 28.17
          - type: mrr_at_100
            value: 28.99
          - type: mrr_at_1000
            value: 29.082
          - type: mrr_at_3
            value: 25.951
          - type: mrr_at_5
            value: 27.241
          - type: ndcg_at_1
            value: 20.776
          - type: ndcg_at_10
            value: 28.909000000000002
          - type: ndcg_at_100
            value: 33.917
          - type: ndcg_at_1000
            value: 37.173
          - type: ndcg_at_3
            value: 24.769
          - type: ndcg_at_5
            value: 26.698
          - type: precision_at_1
            value: 20.776
          - type: precision_at_10
            value: 5.445
          - type: precision_at_100
            value: 0.943
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 11.985999999999999
          - type: precision_at_5
            value: 8.699
          - type: recall_at_1
            value: 17.052999999999997
          - type: recall_at_10
            value: 38.922000000000004
          - type: recall_at_100
            value: 60.624
          - type: recall_at_1000
            value: 83.83
          - type: recall_at_3
            value: 27.35
          - type: recall_at_5
            value: 32.513999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.981
          - type: map_at_10
            value: 24.99583333333333
          - type: map_at_100
            value: 26.054083333333335
          - type: map_at_1000
            value: 26.180916666666672
          - type: map_at_3
            value: 22.802666666666667
          - type: map_at_5
            value: 24.00508333333333
          - type: mrr_at_1
            value: 21.373916666666666
          - type: mrr_at_10
            value: 28.53433333333333
          - type: mrr_at_100
            value: 29.404000000000003
          - type: mrr_at_1000
            value: 29.481999999999996
          - type: mrr_at_3
            value: 26.462999999999997
          - type: mrr_at_5
            value: 27.596083333333333
          - type: ndcg_at_1
            value: 21.373916666666666
          - type: ndcg_at_10
            value: 29.40908333333333
          - type: ndcg_at_100
            value: 34.43266666666666
          - type: ndcg_at_1000
            value: 37.334916666666665
          - type: ndcg_at_3
            value: 25.518250000000002
          - type: ndcg_at_5
            value: 27.286916666666666
          - type: precision_at_1
            value: 21.373916666666666
          - type: precision_at_10
            value: 5.265666666666667
          - type: precision_at_100
            value: 0.9175833333333334
          - type: precision_at_1000
            value: 0.13533333333333336
          - type: precision_at_3
            value: 11.92425
          - type: precision_at_5
            value: 8.532250000000001
          - type: recall_at_1
            value: 17.981
          - type: recall_at_10
            value: 39.14641666666667
          - type: recall_at_100
            value: 61.65433333333334
          - type: recall_at_1000
            value: 82.39216666666665
          - type: recall_at_3
            value: 28.15266666666667
          - type: recall_at_5
            value: 32.795
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.834
          - type: map_at_10
            value: 22.046
          - type: map_at_100
            value: 22.954
          - type: map_at_1000
            value: 23.051
          - type: map_at_3
            value: 20.602999999999998
          - type: map_at_5
            value: 21.387999999999998
          - type: mrr_at_1
            value: 19.172
          - type: mrr_at_10
            value: 24.558
          - type: mrr_at_100
            value: 25.439
          - type: mrr_at_1000
            value: 25.509999999999998
          - type: mrr_at_3
            value: 23.185
          - type: mrr_at_5
            value: 23.852
          - type: ndcg_at_1
            value: 19.172
          - type: ndcg_at_10
            value: 25.189
          - type: ndcg_at_100
            value: 29.918
          - type: ndcg_at_1000
            value: 32.677
          - type: ndcg_at_3
            value: 22.496
          - type: ndcg_at_5
            value: 23.677
          - type: precision_at_1
            value: 19.172
          - type: precision_at_10
            value: 3.834
          - type: precision_at_100
            value: 0.679
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 9.611
          - type: precision_at_5
            value: 6.4719999999999995
          - type: recall_at_1
            value: 16.834
          - type: recall_at_10
            value: 32.554
          - type: recall_at_100
            value: 54.416
          - type: recall_at_1000
            value: 75.334
          - type: recall_at_3
            value: 25.057000000000002
          - type: recall_at_5
            value: 28.155
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.778
          - type: map_at_10
            value: 15.885
          - type: map_at_100
            value: 16.716
          - type: map_at_1000
            value: 16.838
          - type: map_at_3
            value: 14.283999999999999
          - type: map_at_5
            value: 15.067
          - type: mrr_at_1
            value: 13.421
          - type: mrr_at_10
            value: 19.022
          - type: mrr_at_100
            value: 19.819
          - type: mrr_at_1000
            value: 19.912
          - type: mrr_at_3
            value: 17.366
          - type: mrr_at_5
            value: 18.18
          - type: ndcg_at_1
            value: 13.421
          - type: ndcg_at_10
            value: 19.375
          - type: ndcg_at_100
            value: 23.733999999999998
          - type: ndcg_at_1000
            value: 26.878
          - type: ndcg_at_3
            value: 16.383
          - type: ndcg_at_5
            value: 17.53
          - type: precision_at_1
            value: 13.421
          - type: precision_at_10
            value: 3.637
          - type: precision_at_100
            value: 0.681
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 7.983
          - type: precision_at_5
            value: 5.671
          - type: recall_at_1
            value: 10.778
          - type: recall_at_10
            value: 26.985999999999997
          - type: recall_at_100
            value: 47.143
          - type: recall_at_1000
            value: 69.842
          - type: recall_at_3
            value: 18.289
          - type: recall_at_5
            value: 21.459
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.077
          - type: map_at_10
            value: 23.31
          - type: map_at_100
            value: 24.351
          - type: map_at_1000
            value: 24.471
          - type: map_at_3
            value: 21.272
          - type: map_at_5
            value: 22.320999999999998
          - type: mrr_at_1
            value: 19.683
          - type: mrr_at_10
            value: 26.44
          - type: mrr_at_100
            value: 27.395000000000003
          - type: mrr_at_1000
            value: 27.479
          - type: mrr_at_3
            value: 24.549000000000003
          - type: mrr_at_5
            value: 25.477
          - type: ndcg_at_1
            value: 19.683
          - type: ndcg_at_10
            value: 27.33
          - type: ndcg_at_100
            value: 32.595
          - type: ndcg_at_1000
            value: 35.671
          - type: ndcg_at_3
            value: 23.536
          - type: ndcg_at_5
            value: 25.09
          - type: precision_at_1
            value: 19.683
          - type: precision_at_10
            value: 4.711
          - type: precision_at_100
            value: 0.84
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 10.697
          - type: precision_at_5
            value: 7.5
          - type: recall_at_1
            value: 17.077
          - type: recall_at_10
            value: 36.532
          - type: recall_at_100
            value: 59.955999999999996
          - type: recall_at_1000
            value: 82.536
          - type: recall_at_3
            value: 25.982
          - type: recall_at_5
            value: 29.965999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.137
          - type: map_at_10
            value: 23.889
          - type: map_at_100
            value: 25.089
          - type: map_at_1000
            value: 25.284000000000002
          - type: map_at_3
            value: 21.844
          - type: map_at_5
            value: 23.185
          - type: mrr_at_1
            value: 20.552999999999997
          - type: mrr_at_10
            value: 27.996
          - type: mrr_at_100
            value: 28.921000000000003
          - type: mrr_at_1000
            value: 28.999999999999996
          - type: mrr_at_3
            value: 25.955000000000002
          - type: mrr_at_5
            value: 27.269
          - type: ndcg_at_1
            value: 20.552999999999997
          - type: ndcg_at_10
            value: 28.555000000000003
          - type: ndcg_at_100
            value: 34.035
          - type: ndcg_at_1000
            value: 37.466
          - type: ndcg_at_3
            value: 25.105
          - type: ndcg_at_5
            value: 27.13
          - type: precision_at_1
            value: 20.552999999999997
          - type: precision_at_10
            value: 5.534
          - type: precision_at_100
            value: 1.117
          - type: precision_at_1000
            value: 0.20400000000000001
          - type: precision_at_3
            value: 12.253
          - type: precision_at_5
            value: 9.17
          - type: recall_at_1
            value: 17.137
          - type: recall_at_10
            value: 37.527
          - type: recall_at_100
            value: 62.905
          - type: recall_at_1000
            value: 85.839
          - type: recall_at_3
            value: 27.262999999999998
          - type: recall_at_5
            value: 32.735
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.253
          - type: map_at_10
            value: 19.185
          - type: map_at_100
            value: 19.972
          - type: map_at_1000
            value: 20.094
          - type: map_at_3
            value: 17.076
          - type: map_at_5
            value: 18.207
          - type: mrr_at_1
            value: 14.418000000000001
          - type: mrr_at_10
            value: 20.881
          - type: mrr_at_100
            value: 21.632
          - type: mrr_at_1000
            value: 21.73
          - type: mrr_at_3
            value: 18.731
          - type: mrr_at_5
            value: 19.914
          - type: ndcg_at_1
            value: 14.418000000000001
          - type: ndcg_at_10
            value: 23.146
          - type: ndcg_at_100
            value: 27.389999999999997
          - type: ndcg_at_1000
            value: 30.593999999999998
          - type: ndcg_at_3
            value: 18.843
          - type: ndcg_at_5
            value: 20.821
          - type: precision_at_1
            value: 14.418000000000001
          - type: precision_at_10
            value: 3.9190000000000005
          - type: precision_at_100
            value: 0.662
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 8.195
          - type: precision_at_5
            value: 6.174
          - type: recall_at_1
            value: 13.253
          - type: recall_at_10
            value: 33.745999999999995
          - type: recall_at_100
            value: 54.027
          - type: recall_at_1000
            value: 78.321
          - type: recall_at_3
            value: 21.959
          - type: recall_at_5
            value: 26.747
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 9.446
          - type: ndcg_at_3
            value: 8.708
          - type: ndcg_at_5
            value: 9.583
          - type: ndcg_at_10
            value: 11.324
          - type: ndcg_at_100
            value: 16.563
          - type: ndcg_at_1000
            value: 20.402
          - type: map_at_1
            value: 4.407
          - type: map_at_3
            value: 6.283999999999999
          - type: map_at_5
            value: 6.888
          - type: map_at_10
            value: 7.545
          - type: map_at_100
            value: 8.502
          - type: map_at_1000
            value: 8.677
          - type: recall_at_1
            value: 4.407
          - type: recall_at_3
            value: 8.341999999999999
          - type: recall_at_5
            value: 10.609
          - type: recall_at_10
            value: 14.572
          - type: recall_at_100
            value: 33.802
          - type: recall_at_1000
            value: 56.13
          - type: precision_at_1
            value: 9.446
          - type: precision_at_3
            value: 6.3839999999999995
          - type: precision_at_5
            value: 5.029
          - type: precision_at_10
            value: 3.655
          - type: precision_at_100
            value: 0.9169999999999999
          - type: precision_at_1000
            value: 0.159
          - type: mrr_at_1
            value: 9.446
          - type: mrr_at_3
            value: 12.975
          - type: mrr_at_5
            value: 14.102
          - type: mrr_at_10
            value: 15.223999999999998
          - type: mrr_at_100
            value: 16.378
          - type: mrr_at_1000
            value: 16.469
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.3839999999999995
          - type: map_at_10
            value: 8.92
          - type: map_at_100
            value: 12.509999999999998
          - type: map_at_1000
            value: 13.555
          - type: map_at_3
            value: 6.508
          - type: map_at_5
            value: 7.521
          - type: mrr_at_1
            value: 38
          - type: mrr_at_10
            value: 47.796
          - type: mrr_at_100
            value: 48.554
          - type: mrr_at_1000
            value: 48.579
          - type: mrr_at_3
            value: 44.708
          - type: mrr_at_5
            value: 46.521
          - type: ndcg_at_1
            value: 29.125
          - type: ndcg_at_10
            value: 22.126
          - type: ndcg_at_100
            value: 26.369999999999997
          - type: ndcg_at_1000
            value: 33.604
          - type: ndcg_at_3
            value: 24.102999999999998
          - type: ndcg_at_5
            value: 22.926
          - type: precision_at_1
            value: 38
          - type: precision_at_10
            value: 18.2
          - type: precision_at_100
            value: 6.208
          - type: precision_at_1000
            value: 1.3679999999999999
          - type: precision_at_3
            value: 26.5
          - type: precision_at_5
            value: 22.900000000000002
          - type: recall_at_1
            value: 4.3839999999999995
          - type: recall_at_10
            value: 13.520999999999999
          - type: recall_at_100
            value: 33.053
          - type: recall_at_1000
            value: 56.516
          - type: recall_at_3
            value: 7.515
          - type: recall_at_5
            value: 9.775
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 90.38999999999999
          - type: f1
            value: 87.12778738994012
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.132
          - type: map_at_10
            value: 79.527
          - type: map_at_100
            value: 79.81200000000001
          - type: map_at_1000
            value: 79.828
          - type: map_at_3
            value: 78.191
          - type: map_at_5
            value: 79.092
          - type: mrr_at_1
            value: 75.563
          - type: mrr_at_10
            value: 83.80199999999999
          - type: mrr_at_100
            value: 83.93
          - type: mrr_at_1000
            value: 83.933
          - type: mrr_at_3
            value: 82.818
          - type: mrr_at_5
            value: 83.505
          - type: ndcg_at_1
            value: 75.563
          - type: ndcg_at_10
            value: 83.692
          - type: ndcg_at_100
            value: 84.706
          - type: ndcg_at_1000
            value: 85.001
          - type: ndcg_at_3
            value: 81.51
          - type: ndcg_at_5
            value: 82.832
          - type: precision_at_1
            value: 75.563
          - type: precision_at_10
            value: 10.245
          - type: precision_at_100
            value: 1.0959999999999999
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 31.518
          - type: precision_at_5
            value: 19.772000000000002
          - type: recall_at_1
            value: 70.132
          - type: recall_at_10
            value: 92.204
          - type: recall_at_100
            value: 96.261
          - type: recall_at_1000
            value: 98.17399999999999
          - type: recall_at_3
            value: 86.288
          - type: recall_at_5
            value: 89.63799999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.688000000000001
          - type: map_at_10
            value: 13.839000000000002
          - type: map_at_100
            value: 15.082999999999998
          - type: map_at_1000
            value: 15.276
          - type: map_at_3
            value: 11.662
          - type: map_at_5
            value: 12.827
          - type: mrr_at_1
            value: 15.741
          - type: mrr_at_10
            value: 23.304
          - type: mrr_at_100
            value: 24.239
          - type: mrr_at_1000
            value: 24.319
          - type: mrr_at_3
            value: 20.962
          - type: mrr_at_5
            value: 22.243
          - type: ndcg_at_1
            value: 15.741
          - type: ndcg_at_10
            value: 18.914
          - type: ndcg_at_100
            value: 24.742
          - type: ndcg_at_1000
            value: 28.938000000000002
          - type: ndcg_at_3
            value: 16.181
          - type: ndcg_at_5
            value: 17.078
          - type: precision_at_1
            value: 15.741
          - type: precision_at_10
            value: 5.7410000000000005
          - type: precision_at_100
            value: 1.168
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 11.368
          - type: precision_at_5
            value: 8.735
          - type: recall_at_1
            value: 7.688000000000001
          - type: recall_at_10
            value: 24.442
          - type: recall_at_100
            value: 47.288999999999994
          - type: recall_at_1000
            value: 73.49900000000001
          - type: recall_at_3
            value: 15.15
          - type: recall_at_5
            value: 18.858
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.412
          - type: map_at_10
            value: 66.376
          - type: map_at_100
            value: 67.217
          - type: map_at_1000
            value: 67.271
          - type: map_at_3
            value: 62.741
          - type: map_at_5
            value: 65.069
          - type: mrr_at_1
            value: 80.824
          - type: mrr_at_10
            value: 86.53
          - type: mrr_at_100
            value: 86.67399999999999
          - type: mrr_at_1000
            value: 86.678
          - type: mrr_at_3
            value: 85.676
          - type: mrr_at_5
            value: 86.256
          - type: ndcg_at_1
            value: 80.824
          - type: ndcg_at_10
            value: 74.332
          - type: ndcg_at_100
            value: 77.154
          - type: ndcg_at_1000
            value: 78.12400000000001
          - type: ndcg_at_3
            value: 69.353
          - type: ndcg_at_5
            value: 72.234
          - type: precision_at_1
            value: 80.824
          - type: precision_at_10
            value: 15.652
          - type: precision_at_100
            value: 1.7840000000000003
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 44.911
          - type: precision_at_5
            value: 29.221000000000004
          - type: recall_at_1
            value: 40.412
          - type: recall_at_10
            value: 78.25800000000001
          - type: recall_at_100
            value: 89.196
          - type: recall_at_1000
            value: 95.544
          - type: recall_at_3
            value: 67.367
          - type: recall_at_5
            value: 73.05199999999999
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 88.8228
          - type: ap
            value: 84.52103126779862
          - type: f1
            value: 88.797782219813
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 8.461
          - type: map_at_10
            value: 14.979999999999999
          - type: map_at_100
            value: 16.032
          - type: map_at_1000
            value: 16.128
          - type: map_at_3
            value: 12.64
          - type: map_at_5
            value: 13.914000000000001
          - type: mrr_at_1
            value: 8.681999999999999
          - type: mrr_at_10
            value: 15.341
          - type: mrr_at_100
            value: 16.377
          - type: mrr_at_1000
            value: 16.469
          - type: mrr_at_3
            value: 12.963
          - type: mrr_at_5
            value: 14.262
          - type: ndcg_at_1
            value: 8.681999999999999
          - type: ndcg_at_10
            value: 19.045
          - type: ndcg_at_100
            value: 24.735
          - type: ndcg_at_1000
            value: 27.556000000000004
          - type: ndcg_at_3
            value: 14.154
          - type: ndcg_at_5
            value: 16.448
          - type: precision_at_1
            value: 8.681999999999999
          - type: precision_at_10
            value: 3.292
          - type: precision_at_100
            value: 0.623
          - type: precision_at_1000
            value: 0.087
          - type: precision_at_3
            value: 6.275
          - type: precision_at_5
            value: 4.92
          - type: recall_at_1
            value: 8.461
          - type: recall_at_10
            value: 31.729000000000003
          - type: recall_at_100
            value: 59.367000000000004
          - type: recall_at_1000
            value: 81.86
          - type: recall_at_3
            value: 18.234
          - type: recall_at_5
            value: 23.74
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 98.1623347013224
          - type: f1
            value: 97.95934123221338
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 93.0141358869129
          - type: f1
            value: 77.42161481798763
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.20242098184264
          - type: f1
            value: 73.64580701123289
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 88.38264963012777
          - type: f1
            value: 87.6445935642575
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 28.982276213044095
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 26.08731318128303
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 29.680164236394784
          - type: mrr
            value: 30.60242075910688
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.35
          - type: map_at_10
            value: 10.03
          - type: map_at_100
            value: 12.61
          - type: map_at_1000
            value: 13.916999999999998
          - type: map_at_3
            value: 7.428
          - type: map_at_5
            value: 8.625
          - type: mrr_at_1
            value: 39.009
          - type: mrr_at_10
            value: 47.63
          - type: mrr_at_100
            value: 48.259
          - type: mrr_at_1000
            value: 48.302
          - type: mrr_at_3
            value: 45.408
          - type: mrr_at_5
            value: 46.971000000000004
          - type: ndcg_at_1
            value: 36.997
          - type: ndcg_at_10
            value: 28.781000000000002
          - type: ndcg_at_100
            value: 26.644000000000002
          - type: ndcg_at_1000
            value: 35.812
          - type: ndcg_at_3
            value: 34.056
          - type: ndcg_at_5
            value: 31.804
          - type: precision_at_1
            value: 38.080000000000005
          - type: precision_at_10
            value: 20.96
          - type: precision_at_100
            value: 6.808
          - type: precision_at_1000
            value: 1.991
          - type: precision_at_3
            value: 32.095
          - type: precision_at_5
            value: 27.43
          - type: recall_at_1
            value: 4.35
          - type: recall_at_10
            value: 14.396
          - type: recall_at_100
            value: 28.126
          - type: recall_at_1000
            value: 60.785
          - type: recall_at_3
            value: 9.001000000000001
          - type: recall_at_5
            value: 11.197
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.408
          - type: map_at_10
            value: 17.247
          - type: map_at_100
            value: 18.578
          - type: map_at_1000
            value: 18.683
          - type: map_at_3
            value: 14.424999999999999
          - type: map_at_5
            value: 15.967999999999998
          - type: mrr_at_1
            value: 10.718
          - type: mrr_at_10
            value: 18.974
          - type: mrr_at_100
            value: 20.153
          - type: mrr_at_1000
            value: 20.238
          - type: mrr_at_3
            value: 16.087
          - type: mrr_at_5
            value: 17.685000000000002
          - type: ndcg_at_1
            value: 10.718
          - type: ndcg_at_10
            value: 22.313
          - type: ndcg_at_100
            value: 28.810999999999996
          - type: ndcg_at_1000
            value: 31.495
          - type: ndcg_at_3
            value: 16.487
          - type: ndcg_at_5
            value: 19.252
          - type: precision_at_1
            value: 10.718
          - type: precision_at_10
            value: 4.256
          - type: precision_at_100
            value: 0.7979999999999999
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 7.976
          - type: precision_at_5
            value: 6.3149999999999995
          - type: recall_at_1
            value: 9.408
          - type: recall_at_10
            value: 36.364999999999995
          - type: recall_at_100
            value: 66.16499999999999
          - type: recall_at_1000
            value: 86.47399999999999
          - type: recall_at_3
            value: 20.829
          - type: recall_at_5
            value: 27.296
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 65.499
          - type: map_at_10
            value: 78.432
          - type: map_at_100
            value: 79.169
          - type: map_at_1000
            value: 79.199
          - type: map_at_3
            value: 75.476
          - type: map_at_5
            value: 77.28399999999999
          - type: mrr_at_1
            value: 75.55
          - type: mrr_at_10
            value: 82.16499999999999
          - type: mrr_at_100
            value: 82.37
          - type: mrr_at_1000
            value: 82.375
          - type: mrr_at_3
            value: 80.925
          - type: mrr_at_5
            value: 81.748
          - type: ndcg_at_1
            value: 75.58
          - type: ndcg_at_10
            value: 82.663
          - type: ndcg_at_100
            value: 84.526
          - type: ndcg_at_1000
            value: 84.843
          - type: ndcg_at_3
            value: 79.38300000000001
          - type: ndcg_at_5
            value: 81.133
          - type: precision_at_1
            value: 75.58
          - type: precision_at_10
            value: 12.562000000000001
          - type: precision_at_100
            value: 1.48
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 34.583000000000006
          - type: precision_at_5
            value: 22.858
          - type: recall_at_1
            value: 65.499
          - type: recall_at_10
            value: 90.71000000000001
          - type: recall_at_100
            value: 97.717
          - type: recall_at_1000
            value: 99.551
          - type: recall_at_3
            value: 81.273
          - type: recall_at_5
            value: 86.172
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 43.28689524907211
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 54.41734813535957
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.305
          - type: map_at_10
            value: 8.502
          - type: map_at_100
            value: 10.288
          - type: map_at_1000
            value: 10.599
          - type: map_at_3
            value: 6.146
          - type: map_at_5
            value: 7.207
          - type: mrr_at_1
            value: 16.400000000000002
          - type: mrr_at_10
            value: 26.054
          - type: mrr_at_100
            value: 27.319
          - type: mrr_at_1000
            value: 27.400000000000002
          - type: mrr_at_3
            value: 22.967000000000002
          - type: mrr_at_5
            value: 24.542
          - type: ndcg_at_1
            value: 16.400000000000002
          - type: ndcg_at_10
            value: 14.943000000000001
          - type: ndcg_at_100
            value: 22.596
          - type: ndcg_at_1000
            value: 28.345
          - type: ndcg_at_3
            value: 14.011000000000001
          - type: ndcg_at_5
            value: 12.065
          - type: precision_at_1
            value: 16.400000000000002
          - type: precision_at_10
            value: 7.93
          - type: precision_at_100
            value: 1.902
          - type: precision_at_1000
            value: 0.328
          - type: precision_at_3
            value: 13.233
          - type: precision_at_5
            value: 10.620000000000001
          - type: recall_at_1
            value: 3.305
          - type: recall_at_10
            value: 16.07
          - type: recall_at_100
            value: 38.592999999999996
          - type: recall_at_1000
            value: 66.678
          - type: recall_at_3
            value: 8.025
          - type: recall_at_5
            value: 10.743
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 94.03602783680165
          - type: cos_sim_spearman
            value: 91.93466287712853
          - type: euclidean_pearson
            value: 91.5804659261222
          - type: euclidean_spearman
            value: 91.84239224991634
          - type: manhattan_pearson
            value: 91.57789872896991
          - type: manhattan_spearman
            value: 91.82031929038708
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 97.2530615783017
          - type: cos_sim_spearman
            value: 95.61025838976805
          - type: euclidean_pearson
            value: 95.41071037458771
          - type: euclidean_spearman
            value: 95.6207550803838
          - type: manhattan_pearson
            value: 95.39723545188045
          - type: manhattan_spearman
            value: 95.61540593501014
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 95.27491458980685
          - type: cos_sim_spearman
            value: 95.1521844663505
          - type: euclidean_pearson
            value: 94.63883752108002
          - type: euclidean_spearman
            value: 94.85954995945424
          - type: manhattan_pearson
            value: 94.59749433419627
          - type: manhattan_spearman
            value: 94.80626857571967
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 97.10518525877228
          - type: cos_sim_spearman
            value: 96.85836209648471
          - type: euclidean_pearson
            value: 95.8019730340664
          - type: euclidean_spearman
            value: 96.78892865690494
          - type: manhattan_pearson
            value: 95.79265816494754
          - type: manhattan_spearman
            value: 96.7712534155723
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 96.66550105336606
          - type: cos_sim_spearman
            value: 96.73134982392861
          - type: euclidean_pearson
            value: 95.50375963201927
          - type: euclidean_spearman
            value: 96.46785996403956
          - type: manhattan_pearson
            value: 95.47555707089327
          - type: manhattan_spearman
            value: 96.40825860300748
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 96.07365154052914
          - type: cos_sim_spearman
            value: 96.1720485037732
          - type: euclidean_pearson
            value: 95.58880196128803
          - type: euclidean_spearman
            value: 96.02102007396296
          - type: manhattan_pearson
            value: 95.60295336628664
          - type: manhattan_spearman
            value: 96.03461694944212
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 96.14907313714893
          - type: cos_sim_spearman
            value: 96.14822520805113
          - type: euclidean_pearson
            value: 95.62140726773103
          - type: euclidean_spearman
            value: 96.01818385482282
          - type: manhattan_pearson
            value: 95.60795162280982
          - type: manhattan_spearman
            value: 96.00703635484169
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.35513203366195
          - type: cos_sim_spearman
            value: 64.92002333937089
          - type: euclidean_pearson
            value: 67.06304516009153
          - type: euclidean_spearman
            value: 65.3504536039936
          - type: manhattan_pearson
            value: 67.22016756598737
          - type: manhattan_spearman
            value: 65.64455991383844
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 96.59372149477922
          - type: cos_sim_spearman
            value: 96.97247348665515
          - type: euclidean_pearson
            value: 95.64890160850817
          - type: euclidean_spearman
            value: 96.84619618958573
          - type: manhattan_pearson
            value: 95.65581449537562
          - type: manhattan_spearman
            value: 96.853383309355
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.9991957697061
          - type: mrr
            value: 93.85864317236866
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.25
          - type: map_at_10
            value: 51.257
          - type: map_at_100
            value: 52.261
          - type: map_at_1000
            value: 52.309000000000005
          - type: map_at_3
            value: 48.759
          - type: map_at_5
            value: 50.413
          - type: mrr_at_1
            value: 44
          - type: mrr_at_10
            value: 52.367
          - type: mrr_at_100
            value: 53.181999999999995
          - type: mrr_at_1000
            value: 53.223
          - type: mrr_at_3
            value: 50.222
          - type: mrr_at_5
            value: 51.656
          - type: ndcg_at_1
            value: 44
          - type: ndcg_at_10
            value: 55.672
          - type: ndcg_at_100
            value: 59.779
          - type: ndcg_at_1000
            value: 61.114999999999995
          - type: ndcg_at_3
            value: 51.136
          - type: ndcg_at_5
            value: 53.822
          - type: precision_at_1
            value: 44
          - type: precision_at_10
            value: 7.6
          - type: precision_at_100
            value: 0.9730000000000001
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 20.111
          - type: precision_at_5
            value: 13.733
          - type: recall_at_1
            value: 42.25
          - type: recall_at_10
            value: 67.989
          - type: recall_at_100
            value: 85.56700000000001
          - type: recall_at_1000
            value: 96.267
          - type: recall_at_3
            value: 56.27799999999999
          - type: recall_at_5
            value: 62.678
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.75346534653465
          - type: cos_sim_ap
            value: 92.92934020206276
          - type: cos_sim_f1
            value: 87.37373737373737
          - type: cos_sim_precision
            value: 88.26530612244898
          - type: cos_sim_recall
            value: 86.5
          - type: dot_accuracy
            value: 99.7
          - type: dot_ap
            value: 90.30253078505329
          - type: dot_f1
            value: 84.55696202531644
          - type: dot_precision
            value: 85.64102564102564
          - type: dot_recall
            value: 83.5
          - type: euclidean_accuracy
            value: 99.75742574257426
          - type: euclidean_ap
            value: 92.97542565802068
          - type: euclidean_f1
            value: 87.48083801737351
          - type: euclidean_precision
            value: 89.44618599791013
          - type: euclidean_recall
            value: 85.6
          - type: manhattan_accuracy
            value: 99.75643564356436
          - type: manhattan_ap
            value: 92.92733519229752
          - type: manhattan_f1
            value: 87.41044012282498
          - type: manhattan_precision
            value: 89.51781970649894
          - type: manhattan_recall
            value: 85.39999999999999
          - type: max_accuracy
            value: 99.75742574257426
          - type: max_ap
            value: 92.97542565802068
          - type: max_f1
            value: 87.48083801737351
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 46.968629347107225
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 31.76101811464947
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 47.838618465936364
          - type: mrr
            value: 48.51134772090654
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.101149949190837
          - type: cos_sim_spearman
            value: 30.99886288816569
          - type: dot_pearson
            value: 28.905040829977978
          - type: dot_spearman
            value: 28.101690957830428
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.129
          - type: map_at_10
            value: 0.6930000000000001
          - type: map_at_100
            value: 2.408
          - type: map_at_1000
            value: 4.731
          - type: map_at_3
            value: 0.314
          - type: map_at_5
            value: 0.43
          - type: mrr_at_1
            value: 44
          - type: mrr_at_10
            value: 55.132999999999996
          - type: mrr_at_100
            value: 56.455
          - type: mrr_at_1000
            value: 56.474000000000004
          - type: mrr_at_3
            value: 53.333
          - type: mrr_at_5
            value: 55.132999999999996
          - type: ndcg_at_1
            value: 40
          - type: ndcg_at_10
            value: 33.283
          - type: ndcg_at_100
            value: 18.892
          - type: ndcg_at_1000
            value: 17.457
          - type: ndcg_at_3
            value: 39.073
          - type: ndcg_at_5
            value: 35.609
          - type: precision_at_1
            value: 44
          - type: precision_at_10
            value: 33.800000000000004
          - type: precision_at_100
            value: 17.44
          - type: precision_at_1000
            value: 7.04
          - type: precision_at_3
            value: 40.666999999999994
          - type: precision_at_5
            value: 36.4
          - type: recall_at_1
            value: 0.129
          - type: recall_at_10
            value: 0.91
          - type: recall_at_100
            value: 4.449
          - type: recall_at_1000
            value: 16.091
          - type: recall_at_3
            value: 0.349
          - type: recall_at_5
            value: 0.518
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.189
          - type: map_at_10
            value: 5.196
          - type: map_at_100
            value: 8.984
          - type: map_at_1000
            value: 10.333
          - type: map_at_3
            value: 2.513
          - type: map_at_5
            value: 3.8089999999999997
          - type: mrr_at_1
            value: 14.285999999999998
          - type: mrr_at_10
            value: 26.295
          - type: mrr_at_100
            value: 28.285
          - type: mrr_at_1000
            value: 28.303
          - type: mrr_at_3
            value: 22.109
          - type: mrr_at_5
            value: 24.864
          - type: ndcg_at_1
            value: 12.245000000000001
          - type: ndcg_at_10
            value: 13.196
          - type: ndcg_at_100
            value: 24.189
          - type: ndcg_at_1000
            value: 36.015
          - type: ndcg_at_3
            value: 12.153
          - type: ndcg_at_5
            value: 13.459999999999999
          - type: precision_at_1
            value: 14.285999999999998
          - type: precision_at_10
            value: 12.653
          - type: precision_at_100
            value: 5.673
          - type: precision_at_1000
            value: 1.32
          - type: precision_at_3
            value: 12.925
          - type: precision_at_5
            value: 15.101999999999999
          - type: recall_at_1
            value: 1.189
          - type: recall_at_10
            value: 9.478
          - type: recall_at_100
            value: 36.076
          - type: recall_at_1000
            value: 71.88900000000001
          - type: recall_at_3
            value: 3.1710000000000003
          - type: recall_at_5
            value: 5.944
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 81.1632
          - type: ap
            value: 21.801031224655016
          - type: f1
            value: 63.93057804886679
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 68.15789473684211
          - type: f1
            value: 68.55744497973521
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.77313771942972
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.79603027954938
          - type: cos_sim_ap
            value: 73.19931192854375
          - type: cos_sim_f1
            value: 66.7699457784663
          - type: cos_sim_precision
            value: 65.3690596562184
          - type: cos_sim_recall
            value: 68.23218997361478
          - type: dot_accuracy
            value: 84.72313286046374
          - type: dot_ap
            value: 69.84066382008972
          - type: dot_f1
            value: 64.42618869803336
          - type: dot_precision
            value: 60.98020735155514
          - type: dot_recall
            value: 68.28496042216359
          - type: euclidean_accuracy
            value: 85.81391190320082
          - type: euclidean_ap
            value: 73.4051677083228
          - type: euclidean_f1
            value: 67.35092864125122
          - type: euclidean_precision
            value: 62.721893491124256
          - type: euclidean_recall
            value: 72.71767810026385
          - type: manhattan_accuracy
            value: 85.81391190320082
          - type: manhattan_ap
            value: 73.33759860950396
          - type: manhattan_f1
            value: 67.32576589771757
          - type: manhattan_precision
            value: 62.63910969793323
          - type: manhattan_recall
            value: 72.77044854881267
          - type: max_accuracy
            value: 85.81391190320082
          - type: max_ap
            value: 73.4051677083228
          - type: max_f1
            value: 67.35092864125122
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.17479722125199
          - type: cos_sim_ap
            value: 84.37486145048878
          - type: cos_sim_f1
            value: 76.65294717365856
          - type: cos_sim_precision
            value: 75.21304186735827
          - type: cos_sim_recall
            value: 78.14906067138897
          - type: dot_accuracy
            value: 87.72460899600264
          - type: dot_ap
            value: 83.01188676406672
          - type: dot_f1
            value: 75.8810775054206
          - type: dot_precision
            value: 72.58665541728186
          - type: dot_recall
            value: 79.48875885432707
          - type: euclidean_accuracy
            value: 88.16315442232313
          - type: euclidean_ap
            value: 84.32021529803454
          - type: euclidean_f1
            value: 76.60147856804691
          - type: euclidean_precision
            value: 72.67638725727316
          - type: euclidean_recall
            value: 80.97474591931014
          - type: manhattan_accuracy
            value: 88.19226141964528
          - type: manhattan_ap
            value: 84.30111334073442
          - type: manhattan_f1
            value: 76.48944401459048
          - type: manhattan_precision
            value: 73.34134105843285
          - type: manhattan_recall
            value: 79.91992608561749
          - type: max_accuracy
            value: 88.19226141964528
          - type: max_ap
            value: 84.37486145048878
          - type: max_f1
            value: 76.65294717365856