distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9203
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2556 1.0 113 2.1665 0.33
1.9061 2.0 226 1.7036 0.57
1.6449 3.0 339 1.3540 0.54
1.4074 4.0 452 1.1028 0.68
1.0121 5.0 565 0.9766 0.68
0.7831 6.0 678 0.8285 0.75
0.9829 7.0 791 0.7499 0.77
0.604 8.0 904 0.7093 0.77
0.6329 9.0 1017 0.7041 0.82
0.4323 10.0 1130 0.7244 0.83
0.1782 11.0 1243 0.7925 0.8
0.2571 12.0 1356 0.7031 0.84
0.1453 13.0 1469 0.7866 0.8
0.5919 14.0 1582 0.8135 0.82
0.307 15.0 1695 0.7489 0.85
0.2163 16.0 1808 0.9134 0.82
0.2081 17.0 1921 0.9109 0.85
0.1025 18.0 2034 0.9215 0.84
0.0415 19.0 2147 0.9542 0.84
0.481 20.0 2260 0.9203 0.83

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
37
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jamesthong/distilhubert-finetuned-gtzan

Finetuned
(425)
this model

Dataset used to train jamesthong/distilhubert-finetuned-gtzan

Evaluation results