metadata
base_model: CompVis/stable-diffusion-v1-4
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
inference: true
Text-to-image finetuning - jangmin/foodai-pipeline-ko
This pipeline was finetuned from CompVis/stable-diffusion-v1-4 with replacement of text encoder Bingsu/my-korean-stable-diffusion-v1-5 on the AI-HUB: 건강관리를 위한 음식 이미지 dataset.
Pipeline usage
You can use the pipeline like so:
from diffusers import StableDiffusionPipeline
import torch
# Set device
device = (
"mps"
if torch.backends.mps.is_available()
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
torch_dtype = torch.float16 if device == "cuda" else torch.float32
pipeline = StableDiffusionPipeline.from_pretrained("jangmin/foodai-pipeline-ko", torch_dtype=torch_dtype)
pipeline.to(device)
prompt = "짜장면, 정면에서 본 사진, 그릇에 담긴"
image = pipeline(prompt, guidance_scale=8, num_inference_steps=35).images[0]
image
Training info
These are the key hyperparameters used during training:
- Epochs: 1
- Learning rate: 1e-05
- Batch size: 8
- Gradient accumulation steps: 4
- Image resolution:512
- Mixed-precision: bf16