jantrienes's picture
Update README.md
9b77608
|
raw
history blame
4.59 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
datasets:
  - launch/open_question_type
metrics:
  - f1
model-index:
  - name: roberta-large-question-classifier
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: launch/open_question_type
          type: launch/open_question_type
          config: default
          split: validation
          args: default
        metrics:
          - name: F1 (macro avg.)
            type: f1
            value: 0.8123190611646329
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: launch/open_question_type
          type: launch/open_question_type
          config: default
          split: test
          args: default
        metrics:
          - name: F1 (macro avg.)
            type: f1
            value: 0.8
widget:
  - text: >-
      When two bacteria exchange genetic information, what is the process
      called?
language:
  - en
arxiv: 2107.00152

roberta-large-question-classifier

This model classifies questions according to the question-type ontology defined in following paper: Controllable Open-ended Question Generation with A New Question Type Ontology (Cao & Wang, ACL-IJCNLP 2021). It is a fine-tuned roberta-large on the open_question_type dataset. It achieves the following results on the test set:

              precision    recall  f1-score   support
       cause       0.91      0.93      0.92        91
  comparison       0.62      0.83      0.71        30
     concept       0.85      0.65      0.74        54
 consequence       0.80      0.73      0.76        11
 disjunction       0.80      0.78      0.79        36
     example       0.83      0.85      0.84       139
      extent       0.82      0.94      0.87        48
  judgmental       0.68      0.56      0.62        94
  procedural       0.86      0.88      0.87        85
verification       0.79      0.86      0.83        72
    accuracy                           0.81       660
   macro avg       0.80      0.80      0.80       660
weighted avg       0.81      0.81      0.81       660

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1
1.9467 1.0 233 1.3099 0.4050
0.6381 2.0 466 0.5586 0.7785
0.628 3.0 699 0.6419 0.7831
0.4487 4.0 932 0.5770 0.8094
0.3319 5.0 1165 0.7713 0.7953
0.2095 6.0 1398 0.8799 0.8018
0.1355 7.0 1631 1.0646 0.7961
0.0956 8.0 1864 1.2175 0.7999
0.0687 9.0 2097 1.3647 0.7892
0.0371 10.0 2330 1.3809 0.7987
0.0303 11.0 2563 1.3591 0.8123
0.0263 12.0 2796 1.5317 0.8100
0.0144 13.0 3029 1.5726 0.7959
0.0436 14.0 3262 1.6160 0.7988
0.0048 15.0 3495 1.6826 0.7957
0.0001 16.0 3728 1.6913 0.7957
0.0001 17.0 3961 1.7076 0.7995
0.0034 18.0 4194 1.8018 0.7960
0.0228 19.0 4427 1.7457 0.7916
0.0083 20.0 4660 1.9279 0.7869
0.0001 21.0 4893 1.8367 0.7915
0.0003 22.0 5126 1.8620 0.7842
0.0002 23.0 5359 1.9192 0.7828
0.0 24.0 5592 1.9081 0.7927
0.0003 25.0 5825 1.9822 0.7813
0.0059 26.0 6058 1.8737 0.7954
0.0 27.0 6291 1.8793 0.7929
0.0 28.0 6524 1.8905 0.7940
0.0 29.0 6757 1.8971 0.7940
0.0002 30.0 6990 1.9002 0.7954

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3