Text-to-Image
Diffusers
Safetensors
lora
flash-pixart / README.md
clementchadebec's picture
Update README.md
eee6df9 verified
|
raw
history blame
2.79 kB
---
license: cc-by-nc-4.0
library_name: diffusers
base_model: PixArt-alpha/PixArt-XL-2-1024-MS
tags:
- lora
- text-to-image
inference: False
---
# ⚡ Flash Diffusion: FlashPixart ⚡
Flash Diffusion is a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin.*
This model is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**.
See our [live demo](https://huggingface.co/spaces/jasperai/FlashPixart) and [official implentation](https://github.com/gojasper/flash-diffusion).
<p align="center">
<img style="width:700px;" src="assets/flash_pixart.jpg">
</p>
# How to use?
The model can be used using the `PixArtAlphaPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **4 steps**.
```python
import torch
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
from peft import PeftModel
# Load LoRA
transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="transformer",
torch_dtype=torch.float16
)
transformer = PeftModel.from_pretrained(
transformer,
"jasperai/flash-pixart"
)
# Pipeline
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
# Scheduler
pipe.scheduler = LCMScheduler.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="scheduler",
timestep_spacing="trailing",
)
pipe.to("cuda")
prompt = "A raccoon reading a book in a lush forest."
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
<p align="center">
<img style="width:400px;" src="assets/raccoon.png">
</p>
# Training Details
The model was trained for 40k iterations on 4 H100 GPUs (representing approximately 188 hours of training). Please refer to the [paper](http://arxiv.org/abs/2406.02347) for further parameters details.
**Metrics on COCO 2014 validation (Table 4)**
- FID-10k: 29.30 (4 NFE)
- CLIP Score: 0.303 (4 NFE)
## Citation
If you find this work useful or use it in your research, please consider citing us
```bibtex
@misc{chadebec2024flash,
title={Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation},
author={Clement Chadebec and Onur Tasar and Eyal Benaroche and Benjamin Aubin},
year={2024},
eprint={2406.02347},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## License
This model is released under the the Creative Commons BY-NC license.