Update README.md
#1
by
qgallouedec
HF staff
- opened
README.md
CHANGED
@@ -174,7 +174,7 @@ model-index:
|
|
174 |
value: 0.14 [0.14, 0.15]
|
175 |
name: IQM expert normalized total reward
|
176 |
- type: iqm_human_normalized_total_reward
|
177 |
-
value: 0.38 [0.37, 0.
|
178 |
name: IQM human normalized total reward
|
179 |
- task:
|
180 |
type: reinforcement-learning
|
@@ -194,7 +194,7 @@ model-index:
|
|
194 |
type: metaworld
|
195 |
metrics:
|
196 |
- type: iqm_expert_normalized_total_reward
|
197 |
-
value: 0.
|
198 |
name: IQM expert normalized total reward
|
199 |
- task:
|
200 |
type: reinforcement-learning
|
@@ -204,7 +204,7 @@ model-index:
|
|
204 |
type: mujoco
|
205 |
metrics:
|
206 |
- type: iqm_expert_normalized_total_reward
|
207 |
-
value: 0.
|
208 |
name: IQM expert normalized total reward
|
209 |
- task:
|
210 |
type: reinforcement-learning
|
@@ -214,13 +214,13 @@ model-index:
|
|
214 |
type: atari-alien
|
215 |
metrics:
|
216 |
- type: total_reward
|
217 |
-
value:
|
218 |
name: Total reward
|
219 |
- type: expert_normalized_total_reward
|
220 |
-
value: 0.
|
221 |
name: Expert normalized total reward
|
222 |
- type: human_normalized_total_reward
|
223 |
-
value: 0.
|
224 |
name: Human normalized total reward
|
225 |
- task:
|
226 |
type: reinforcement-learning
|
@@ -230,13 +230,13 @@ model-index:
|
|
230 |
type: atari-amidar
|
231 |
metrics:
|
232 |
- type: total_reward
|
233 |
-
value:
|
234 |
name: Total reward
|
235 |
- type: expert_normalized_total_reward
|
236 |
-
value: 0.
|
237 |
name: Expert normalized total reward
|
238 |
- type: human_normalized_total_reward
|
239 |
-
value: 0.
|
240 |
name: Human normalized total reward
|
241 |
- task:
|
242 |
type: reinforcement-learning
|
@@ -246,13 +246,13 @@ model-index:
|
|
246 |
type: atari-assault
|
247 |
metrics:
|
248 |
- type: total_reward
|
249 |
-
value:
|
250 |
name: Total reward
|
251 |
- type: expert_normalized_total_reward
|
252 |
value: 0.09 +/- 0.05
|
253 |
name: Expert normalized total reward
|
254 |
- type: human_normalized_total_reward
|
255 |
-
value: 2.
|
256 |
name: Human normalized total reward
|
257 |
- task:
|
258 |
type: reinforcement-learning
|
@@ -262,13 +262,13 @@ model-index:
|
|
262 |
type: atari-asterix
|
263 |
metrics:
|
264 |
- type: total_reward
|
265 |
-
value:
|
266 |
name: Total reward
|
267 |
- type: expert_normalized_total_reward
|
268 |
-
value: 0.
|
269 |
name: Expert normalized total reward
|
270 |
- type: human_normalized_total_reward
|
271 |
-
value: 0.
|
272 |
name: Human normalized total reward
|
273 |
- task:
|
274 |
type: reinforcement-learning
|
@@ -278,7 +278,7 @@ model-index:
|
|
278 |
type: atari-asteroids
|
279 |
metrics:
|
280 |
- type: total_reward
|
281 |
-
value:
|
282 |
name: Total reward
|
283 |
- type: expert_normalized_total_reward
|
284 |
value: 0.00 +/- 0.00
|
@@ -294,13 +294,13 @@ model-index:
|
|
294 |
type: atari-atlantis
|
295 |
metrics:
|
296 |
- type: total_reward
|
297 |
-
value:
|
298 |
name: Total reward
|
299 |
- type: expert_normalized_total_reward
|
300 |
-
value: 0.
|
301 |
name: Expert normalized total reward
|
302 |
- type: human_normalized_total_reward
|
303 |
-
value:
|
304 |
name: Human normalized total reward
|
305 |
- task:
|
306 |
type: reinforcement-learning
|
@@ -310,13 +310,13 @@ model-index:
|
|
310 |
type: atari-bankheist
|
311 |
metrics:
|
312 |
- type: total_reward
|
313 |
-
value:
|
314 |
name: Total reward
|
315 |
- type: expert_normalized_total_reward
|
316 |
-
value: 0.
|
317 |
name: Expert normalized total reward
|
318 |
- type: human_normalized_total_reward
|
319 |
-
value: 1.
|
320 |
name: Human normalized total reward
|
321 |
- task:
|
322 |
type: reinforcement-learning
|
@@ -326,13 +326,13 @@ model-index:
|
|
326 |
type: atari-battlezone
|
327 |
metrics:
|
328 |
- type: total_reward
|
329 |
-
value:
|
330 |
name: Total reward
|
331 |
- type: expert_normalized_total_reward
|
332 |
value: 0.06 +/- 0.02
|
333 |
name: Expert normalized total reward
|
334 |
- type: human_normalized_total_reward
|
335 |
-
value: 0.
|
336 |
name: Human normalized total reward
|
337 |
- task:
|
338 |
type: reinforcement-learning
|
@@ -342,13 +342,13 @@ model-index:
|
|
342 |
type: atari-beamrider
|
343 |
metrics:
|
344 |
- type: total_reward
|
345 |
-
value:
|
346 |
name: Total reward
|
347 |
- type: expert_normalized_total_reward
|
348 |
value: 0.01 +/- 0.01
|
349 |
name: Expert normalized total reward
|
350 |
- type: human_normalized_total_reward
|
351 |
-
value: 0.
|
352 |
name: Human normalized total reward
|
353 |
- task:
|
354 |
type: reinforcement-learning
|
@@ -358,13 +358,13 @@ model-index:
|
|
358 |
type: atari-berzerk
|
359 |
metrics:
|
360 |
- type: total_reward
|
361 |
-
value:
|
362 |
name: Total reward
|
363 |
- type: expert_normalized_total_reward
|
364 |
value: 0.01 +/- 0.01
|
365 |
name: Expert normalized total reward
|
366 |
- type: human_normalized_total_reward
|
367 |
-
value: 0.
|
368 |
name: Human normalized total reward
|
369 |
- task:
|
370 |
type: reinforcement-learning
|
@@ -374,7 +374,7 @@ model-index:
|
|
374 |
type: atari-bowling
|
375 |
metrics:
|
376 |
- type: total_reward
|
377 |
-
value: 22.
|
378 |
name: Total reward
|
379 |
- type: expert_normalized_total_reward
|
380 |
value: 1.00 +/- 0.00
|
@@ -390,13 +390,13 @@ model-index:
|
|
390 |
type: atari-boxing
|
391 |
metrics:
|
392 |
- type: total_reward
|
393 |
-
value:
|
394 |
name: Total reward
|
395 |
- type: expert_normalized_total_reward
|
396 |
-
value: 0.
|
397 |
name: Expert normalized total reward
|
398 |
- type: human_normalized_total_reward
|
399 |
-
value: 7.
|
400 |
name: Human normalized total reward
|
401 |
- task:
|
402 |
type: reinforcement-learning
|
@@ -406,13 +406,13 @@ model-index:
|
|
406 |
type: atari-breakout
|
407 |
metrics:
|
408 |
- type: total_reward
|
409 |
-
value:
|
410 |
name: Total reward
|
411 |
- type: expert_normalized_total_reward
|
412 |
value: 0.01 +/- 0.01
|
413 |
name: Expert normalized total reward
|
414 |
- type: human_normalized_total_reward
|
415 |
-
value: 0.
|
416 |
name: Human normalized total reward
|
417 |
- task:
|
418 |
type: reinforcement-learning
|
@@ -422,13 +422,13 @@ model-index:
|
|
422 |
type: atari-centipede
|
423 |
metrics:
|
424 |
- type: total_reward
|
425 |
-
value:
|
426 |
name: Total reward
|
427 |
- type: expert_normalized_total_reward
|
428 |
-
value: 0.
|
429 |
name: Expert normalized total reward
|
430 |
- type: human_normalized_total_reward
|
431 |
-
value: 0.
|
432 |
name: Human normalized total reward
|
433 |
- task:
|
434 |
type: reinforcement-learning
|
@@ -438,13 +438,13 @@ model-index:
|
|
438 |
type: atari-choppercommand
|
439 |
metrics:
|
440 |
- type: total_reward
|
441 |
-
value:
|
442 |
name: Total reward
|
443 |
- type: expert_normalized_total_reward
|
444 |
-
value: 0.02 +/- 0.
|
445 |
name: Expert normalized total reward
|
446 |
- type: human_normalized_total_reward
|
447 |
-
value: 0.24 +/- 0.
|
448 |
name: Human normalized total reward
|
449 |
- task:
|
450 |
type: reinforcement-learning
|
@@ -454,13 +454,13 @@ model-index:
|
|
454 |
type: atari-crazyclimber
|
455 |
metrics:
|
456 |
- type: total_reward
|
457 |
-
value:
|
458 |
name: Total reward
|
459 |
- type: expert_normalized_total_reward
|
460 |
-
value: 0.
|
461 |
name: Expert normalized total reward
|
462 |
- type: human_normalized_total_reward
|
463 |
-
value: 3.
|
464 |
name: Human normalized total reward
|
465 |
- task:
|
466 |
type: reinforcement-learning
|
@@ -470,13 +470,13 @@ model-index:
|
|
470 |
type: atari-defender
|
471 |
metrics:
|
472 |
- type: total_reward
|
473 |
-
value:
|
474 |
name: Total reward
|
475 |
- type: expert_normalized_total_reward
|
476 |
-
value: 0.10 +/- 0.
|
477 |
name: Expert normalized total reward
|
478 |
- type: human_normalized_total_reward
|
479 |
-
value: 2.30 +/-
|
480 |
name: Human normalized total reward
|
481 |
- task:
|
482 |
type: reinforcement-learning
|
@@ -486,13 +486,13 @@ model-index:
|
|
486 |
type: atari-demonattack
|
487 |
metrics:
|
488 |
- type: total_reward
|
489 |
-
value:
|
490 |
name: Total reward
|
491 |
- type: expert_normalized_total_reward
|
492 |
value: 0.01 +/- 0.01
|
493 |
name: Expert normalized total reward
|
494 |
- type: human_normalized_total_reward
|
495 |
-
value: 0.
|
496 |
name: Human normalized total reward
|
497 |
- task:
|
498 |
type: reinforcement-learning
|
@@ -502,13 +502,13 @@ model-index:
|
|
502 |
type: atari-doubledunk
|
503 |
metrics:
|
504 |
- type: total_reward
|
505 |
-
value:
|
506 |
name: Total reward
|
507 |
- type: expert_normalized_total_reward
|
508 |
-
value: 0.
|
509 |
name: Expert normalized total reward
|
510 |
- type: human_normalized_total_reward
|
511 |
-
value: 0.
|
512 |
name: Human normalized total reward
|
513 |
- task:
|
514 |
type: reinforcement-learning
|
@@ -518,13 +518,13 @@ model-index:
|
|
518 |
type: atari-enduro
|
519 |
metrics:
|
520 |
- type: total_reward
|
521 |
-
value:
|
522 |
name: Total reward
|
523 |
- type: expert_normalized_total_reward
|
524 |
-
value: 0.
|
525 |
name: Expert normalized total reward
|
526 |
- type: human_normalized_total_reward
|
527 |
-
value: 0.
|
528 |
name: Human normalized total reward
|
529 |
- task:
|
530 |
type: reinforcement-learning
|
@@ -534,13 +534,13 @@ model-index:
|
|
534 |
type: atari-fishingderby
|
535 |
metrics:
|
536 |
- type: total_reward
|
537 |
-
value: -
|
538 |
name: Total reward
|
539 |
- type: expert_normalized_total_reward
|
540 |
-
value: 0.
|
541 |
name: Expert normalized total reward
|
542 |
- type: human_normalized_total_reward
|
543 |
-
value: 0.
|
544 |
name: Human normalized total reward
|
545 |
- task:
|
546 |
type: reinforcement-learning
|
@@ -550,10 +550,10 @@ model-index:
|
|
550 |
type: atari-freeway
|
551 |
metrics:
|
552 |
- type: total_reward
|
553 |
-
value: 27.
|
554 |
name: Total reward
|
555 |
- type: expert_normalized_total_reward
|
556 |
-
value: 0.81 +/- 0.
|
557 |
name: Expert normalized total reward
|
558 |
- type: human_normalized_total_reward
|
559 |
value: 0.93 +/- 0.06
|
@@ -566,13 +566,13 @@ model-index:
|
|
566 |
type: atari-frostbite
|
567 |
metrics:
|
568 |
- type: total_reward
|
569 |
-
value:
|
570 |
name: Total reward
|
571 |
- type: expert_normalized_total_reward
|
572 |
-
value: 0.21 +/- 0.
|
573 |
name: Expert normalized total reward
|
574 |
- type: human_normalized_total_reward
|
575 |
-
value: 0.
|
576 |
name: Human normalized total reward
|
577 |
- task:
|
578 |
type: reinforcement-learning
|
@@ -582,13 +582,13 @@ model-index:
|
|
582 |
type: atari-gopher
|
583 |
metrics:
|
584 |
- type: total_reward
|
585 |
-
value:
|
586 |
name: Total reward
|
587 |
- type: expert_normalized_total_reward
|
588 |
value: 0.06 +/- 0.03
|
589 |
name: Expert normalized total reward
|
590 |
- type: human_normalized_total_reward
|
591 |
-
value: 2.
|
592 |
name: Human normalized total reward
|
593 |
- task:
|
594 |
type: reinforcement-learning
|
@@ -598,13 +598,13 @@ model-index:
|
|
598 |
type: atari-gravitar
|
599 |
metrics:
|
600 |
- type: total_reward
|
601 |
-
value:
|
602 |
name: Total reward
|
603 |
- type: expert_normalized_total_reward
|
604 |
-
value: 0.
|
605 |
name: Expert normalized total reward
|
606 |
- type: human_normalized_total_reward
|
607 |
-
value: 0.
|
608 |
name: Human normalized total reward
|
609 |
- task:
|
610 |
type: reinforcement-learning
|
@@ -614,13 +614,13 @@ model-index:
|
|
614 |
type: atari-hero
|
615 |
metrics:
|
616 |
- type: total_reward
|
617 |
-
value:
|
618 |
name: Total reward
|
619 |
- type: expert_normalized_total_reward
|
620 |
-
value: 0.
|
621 |
name: Expert normalized total reward
|
622 |
- type: human_normalized_total_reward
|
623 |
-
value: 0.
|
624 |
name: Human normalized total reward
|
625 |
- task:
|
626 |
type: reinforcement-learning
|
@@ -630,13 +630,13 @@ model-index:
|
|
630 |
type: atari-icehockey
|
631 |
metrics:
|
632 |
- type: total_reward
|
633 |
-
value: 7.
|
634 |
name: Total reward
|
635 |
- type: expert_normalized_total_reward
|
636 |
-
value: 0.
|
637 |
name: Expert normalized total reward
|
638 |
- type: human_normalized_total_reward
|
639 |
-
value: 1.
|
640 |
name: Human normalized total reward
|
641 |
- task:
|
642 |
type: reinforcement-learning
|
@@ -646,13 +646,13 @@ model-index:
|
|
646 |
type: atari-jamesbond
|
647 |
metrics:
|
648 |
- type: total_reward
|
649 |
-
value:
|
650 |
name: Total reward
|
651 |
- type: expert_normalized_total_reward
|
652 |
-
value: 0.01 +/- 0.
|
653 |
name: Expert normalized total reward
|
654 |
- type: human_normalized_total_reward
|
655 |
-
value: 1.
|
656 |
name: Human normalized total reward
|
657 |
- task:
|
658 |
type: reinforcement-learning
|
@@ -662,13 +662,13 @@ model-index:
|
|
662 |
type: atari-kangaroo
|
663 |
metrics:
|
664 |
- type: total_reward
|
665 |
-
value:
|
666 |
name: Total reward
|
667 |
- type: expert_normalized_total_reward
|
668 |
-
value: 0.62 +/- 0.
|
669 |
name: Expert normalized total reward
|
670 |
- type: human_normalized_total_reward
|
671 |
-
value: 0.11 +/- 0.
|
672 |
name: Human normalized total reward
|
673 |
- task:
|
674 |
type: reinforcement-learning
|
@@ -678,13 +678,13 @@ model-index:
|
|
678 |
type: atari-krull
|
679 |
metrics:
|
680 |
- type: total_reward
|
681 |
-
value:
|
682 |
name: Total reward
|
683 |
- type: expert_normalized_total_reward
|
684 |
value: 0.93 +/- 0.13
|
685 |
name: Expert normalized total reward
|
686 |
- type: human_normalized_total_reward
|
687 |
-
value: 8.
|
688 |
name: Human normalized total reward
|
689 |
- task:
|
690 |
type: reinforcement-learning
|
@@ -694,13 +694,13 @@ model-index:
|
|
694 |
type: atari-kungfumaster
|
695 |
metrics:
|
696 |
- type: total_reward
|
697 |
-
value:
|
698 |
name: Total reward
|
699 |
- type: expert_normalized_total_reward
|
700 |
-
value: 0.00 +/- 0.01
|
701 |
name: Expert normalized total reward
|
702 |
- type: human_normalized_total_reward
|
703 |
-
value: 0.00 +/- 0.01
|
704 |
name: Human normalized total reward
|
705 |
- task:
|
706 |
type: reinforcement-learning
|
@@ -726,13 +726,13 @@ model-index:
|
|
726 |
type: atari-mspacman
|
727 |
metrics:
|
728 |
- type: total_reward
|
729 |
-
value:
|
730 |
name: Total reward
|
731 |
- type: expert_normalized_total_reward
|
732 |
-
value: 0.
|
733 |
name: Expert normalized total reward
|
734 |
- type: human_normalized_total_reward
|
735 |
-
value: 0.
|
736 |
name: Human normalized total reward
|
737 |
- task:
|
738 |
type: reinforcement-learning
|
@@ -742,13 +742,13 @@ model-index:
|
|
742 |
type: atari-namethisgame
|
743 |
metrics:
|
744 |
- type: total_reward
|
745 |
-
value:
|
746 |
name: Total reward
|
747 |
- type: expert_normalized_total_reward
|
748 |
-
value: 0.
|
749 |
name: Expert normalized total reward
|
750 |
- type: human_normalized_total_reward
|
751 |
-
value: 0.
|
752 |
name: Human normalized total reward
|
753 |
- task:
|
754 |
type: reinforcement-learning
|
@@ -758,13 +758,13 @@ model-index:
|
|
758 |
type: atari-phoenix
|
759 |
metrics:
|
760 |
- type: total_reward
|
761 |
-
value:
|
762 |
name: Total reward
|
763 |
- type: expert_normalized_total_reward
|
764 |
value: 0.00 +/- 0.00
|
765 |
name: Expert normalized total reward
|
766 |
- type: human_normalized_total_reward
|
767 |
-
value: 0.
|
768 |
name: Human normalized total reward
|
769 |
- task:
|
770 |
type: reinforcement-learning
|
@@ -774,10 +774,10 @@ model-index:
|
|
774 |
type: atari-pitfall
|
775 |
metrics:
|
776 |
- type: total_reward
|
777 |
-
value: -
|
778 |
name: Total reward
|
779 |
- type: expert_normalized_total_reward
|
780 |
-
value: 0.
|
781 |
name: Expert normalized total reward
|
782 |
- type: human_normalized_total_reward
|
783 |
value: 0.03 +/- 0.00
|
@@ -790,13 +790,13 @@ model-index:
|
|
790 |
type: atari-pong
|
791 |
metrics:
|
792 |
- type: total_reward
|
793 |
-
value:
|
794 |
name: Total reward
|
795 |
- type: expert_normalized_total_reward
|
796 |
-
value: 0.
|
797 |
name: Expert normalized total reward
|
798 |
- type: human_normalized_total_reward
|
799 |
-
value:
|
800 |
name: Human normalized total reward
|
801 |
- task:
|
802 |
type: reinforcement-learning
|
@@ -822,13 +822,13 @@ model-index:
|
|
822 |
type: atari-qbert
|
823 |
metrics:
|
824 |
- type: total_reward
|
825 |
-
value:
|
826 |
name: Total reward
|
827 |
- type: expert_normalized_total_reward
|
828 |
-
value: 0.
|
829 |
name: Expert normalized total reward
|
830 |
- type: human_normalized_total_reward
|
831 |
-
value: 0.
|
832 |
name: Human normalized total reward
|
833 |
- task:
|
834 |
type: reinforcement-learning
|
@@ -838,13 +838,13 @@ model-index:
|
|
838 |
type: atari-riverraid
|
839 |
metrics:
|
840 |
- type: total_reward
|
841 |
-
value:
|
842 |
name: Total reward
|
843 |
- type: expert_normalized_total_reward
|
844 |
-
value: 0.
|
845 |
name: Expert normalized total reward
|
846 |
- type: human_normalized_total_reward
|
847 |
-
value: 0.
|
848 |
name: Human normalized total reward
|
849 |
- task:
|
850 |
type: reinforcement-learning
|
@@ -854,13 +854,13 @@ model-index:
|
|
854 |
type: atari-roadrunner
|
855 |
metrics:
|
856 |
- type: total_reward
|
857 |
-
value:
|
858 |
name: Total reward
|
859 |
- type: expert_normalized_total_reward
|
860 |
-
value: 0.
|
861 |
name: Expert normalized total reward
|
862 |
- type: human_normalized_total_reward
|
863 |
-
value: 0.
|
864 |
name: Human normalized total reward
|
865 |
- task:
|
866 |
type: reinforcement-learning
|
@@ -870,13 +870,13 @@ model-index:
|
|
870 |
type: atari-robotank
|
871 |
metrics:
|
872 |
- type: total_reward
|
873 |
-
value:
|
874 |
name: Total reward
|
875 |
- type: expert_normalized_total_reward
|
876 |
-
value: 0.
|
877 |
name: Expert normalized total reward
|
878 |
- type: human_normalized_total_reward
|
879 |
-
value: 0.
|
880 |
name: Human normalized total reward
|
881 |
- task:
|
882 |
type: reinforcement-learning
|
@@ -886,10 +886,10 @@ model-index:
|
|
886 |
type: atari-seaquest
|
887 |
metrics:
|
888 |
- type: total_reward
|
889 |
-
value:
|
890 |
name: Total reward
|
891 |
- type: expert_normalized_total_reward
|
892 |
-
value: 0.
|
893 |
name: Expert normalized total reward
|
894 |
- type: human_normalized_total_reward
|
895 |
value: 0.02 +/- 0.01
|
@@ -902,13 +902,13 @@ model-index:
|
|
902 |
type: atari-skiing
|
903 |
metrics:
|
904 |
- type: total_reward
|
905 |
-
value: -
|
906 |
name: Total reward
|
907 |
- type: expert_normalized_total_reward
|
908 |
-
value: 0.
|
909 |
name: Expert normalized total reward
|
910 |
- type: human_normalized_total_reward
|
911 |
-
value: 0.
|
912 |
name: Human normalized total reward
|
913 |
- task:
|
914 |
type: reinforcement-learning
|
@@ -918,13 +918,13 @@ model-index:
|
|
918 |
type: atari-solaris
|
919 |
metrics:
|
920 |
- type: total_reward
|
921 |
-
value:
|
922 |
name: Total reward
|
923 |
- type: expert_normalized_total_reward
|
924 |
-
value: 0.
|
925 |
name: Expert normalized total reward
|
926 |
- type: human_normalized_total_reward
|
927 |
-
value: 0.00 +/- 0.04
|
928 |
name: Human normalized total reward
|
929 |
- task:
|
930 |
type: reinforcement-learning
|
@@ -934,13 +934,13 @@ model-index:
|
|
934 |
type: atari-spaceinvaders
|
935 |
metrics:
|
936 |
- type: total_reward
|
937 |
-
value:
|
938 |
name: Total reward
|
939 |
- type: expert_normalized_total_reward
|
940 |
-
value: 0.01 +/- 0.
|
941 |
name: Expert normalized total reward
|
942 |
- type: human_normalized_total_reward
|
943 |
-
value: 0.12 +/- 0.
|
944 |
name: Human normalized total reward
|
945 |
- task:
|
946 |
type: reinforcement-learning
|
@@ -950,13 +950,13 @@ model-index:
|
|
950 |
type: atari-stargunner
|
951 |
metrics:
|
952 |
- type: total_reward
|
953 |
-
value:
|
954 |
name: Total reward
|
955 |
- type: expert_normalized_total_reward
|
956 |
value: 0.01 +/- 0.01
|
957 |
name: Expert normalized total reward
|
958 |
- type: human_normalized_total_reward
|
959 |
-
value: 0.
|
960 |
name: Human normalized total reward
|
961 |
- task:
|
962 |
type: reinforcement-learning
|
@@ -966,13 +966,13 @@ model-index:
|
|
966 |
type: atari-surround
|
967 |
metrics:
|
968 |
- type: total_reward
|
969 |
-
value:
|
970 |
name: Total reward
|
971 |
- type: expert_normalized_total_reward
|
972 |
-
value: 0.
|
973 |
name: Expert normalized total reward
|
974 |
- type: human_normalized_total_reward
|
975 |
-
value: 0.
|
976 |
name: Human normalized total reward
|
977 |
- task:
|
978 |
type: reinforcement-learning
|
@@ -982,13 +982,13 @@ model-index:
|
|
982 |
type: atari-tennis
|
983 |
metrics:
|
984 |
- type: total_reward
|
985 |
-
value: -
|
986 |
name: Total reward
|
987 |
- type: expert_normalized_total_reward
|
988 |
-
value: 0.
|
989 |
name: Expert normalized total reward
|
990 |
- type: human_normalized_total_reward
|
991 |
-
value: 0.
|
992 |
name: Human normalized total reward
|
993 |
- task:
|
994 |
type: reinforcement-learning
|
@@ -998,13 +998,13 @@ model-index:
|
|
998 |
type: atari-timepilot
|
999 |
metrics:
|
1000 |
- type: total_reward
|
1001 |
-
value:
|
1002 |
name: Total reward
|
1003 |
- type: expert_normalized_total_reward
|
1004 |
-
value: 0.
|
1005 |
name: Expert normalized total reward
|
1006 |
- type: human_normalized_total_reward
|
1007 |
-
value:
|
1008 |
name: Human normalized total reward
|
1009 |
- task:
|
1010 |
type: reinforcement-learning
|
@@ -1014,13 +1014,13 @@ model-index:
|
|
1014 |
type: atari-tutankham
|
1015 |
metrics:
|
1016 |
- type: total_reward
|
1017 |
-
value:
|
1018 |
name: Total reward
|
1019 |
- type: expert_normalized_total_reward
|
1020 |
-
value: 0.
|
1021 |
name: Expert normalized total reward
|
1022 |
- type: human_normalized_total_reward
|
1023 |
-
value: 0.
|
1024 |
name: Human normalized total reward
|
1025 |
- task:
|
1026 |
type: reinforcement-learning
|
@@ -1030,13 +1030,13 @@ model-index:
|
|
1030 |
type: atari-upndown
|
1031 |
metrics:
|
1032 |
- type: total_reward
|
1033 |
-
value:
|
1034 |
name: Total reward
|
1035 |
- type: expert_normalized_total_reward
|
1036 |
value: 0.04 +/- 0.02
|
1037 |
name: Expert normalized total reward
|
1038 |
- type: human_normalized_total_reward
|
1039 |
-
value: 1.
|
1040 |
name: Human normalized total reward
|
1041 |
- task:
|
1042 |
type: reinforcement-learning
|
@@ -1062,13 +1062,13 @@ model-index:
|
|
1062 |
type: atari-videopinball
|
1063 |
metrics:
|
1064 |
- type: total_reward
|
1065 |
-
value:
|
1066 |
name: Total reward
|
1067 |
- type: expert_normalized_total_reward
|
1068 |
value: 0.03 +/- 0.02
|
1069 |
name: Expert normalized total reward
|
1070 |
- type: human_normalized_total_reward
|
1071 |
-
value: 0.
|
1072 |
name: Human normalized total reward
|
1073 |
- task:
|
1074 |
type: reinforcement-learning
|
@@ -1078,13 +1078,13 @@ model-index:
|
|
1078 |
type: atari-wizardofwor
|
1079 |
metrics:
|
1080 |
- type: total_reward
|
1081 |
-
value:
|
1082 |
name: Total reward
|
1083 |
- type: expert_normalized_total_reward
|
1084 |
-
value: 0.
|
1085 |
name: Expert normalized total reward
|
1086 |
- type: human_normalized_total_reward
|
1087 |
-
value: 0.
|
1088 |
name: Human normalized total reward
|
1089 |
- task:
|
1090 |
type: reinforcement-learning
|
@@ -1094,13 +1094,13 @@ model-index:
|
|
1094 |
type: atari-yarsrevenge
|
1095 |
metrics:
|
1096 |
- type: total_reward
|
1097 |
-
value:
|
1098 |
name: Total reward
|
1099 |
- type: expert_normalized_total_reward
|
1100 |
-
value: 0.
|
1101 |
name: Expert normalized total reward
|
1102 |
- type: human_normalized_total_reward
|
1103 |
-
value: 0.
|
1104 |
name: Human normalized total reward
|
1105 |
- task:
|
1106 |
type: reinforcement-learning
|
@@ -1110,13 +1110,13 @@ model-index:
|
|
1110 |
type: atari-zaxxon
|
1111 |
metrics:
|
1112 |
- type: total_reward
|
1113 |
-
value:
|
1114 |
name: Total reward
|
1115 |
- type: expert_normalized_total_reward
|
1116 |
-
value: 0.
|
1117 |
name: Expert normalized total reward
|
1118 |
- type: human_normalized_total_reward
|
1119 |
-
value: 0.
|
1120 |
name: Human normalized total reward
|
1121 |
- task:
|
1122 |
type: reinforcement-learning
|
@@ -1126,10 +1126,10 @@ model-index:
|
|
1126 |
type: babyai-action-obj-door
|
1127 |
metrics:
|
1128 |
- type: total_reward
|
1129 |
-
value: 0.
|
1130 |
name: Total reward
|
1131 |
- type: expert_normalized_total_reward
|
1132 |
-
value: 0.
|
1133 |
name: Expert normalized total reward
|
1134 |
- task:
|
1135 |
type: reinforcement-learning
|
@@ -1152,10 +1152,10 @@ model-index:
|
|
1152 |
type: babyai-boss-level-no-unlock
|
1153 |
metrics:
|
1154 |
- type: total_reward
|
1155 |
-
value: 0.
|
1156 |
name: Total reward
|
1157 |
- type: expert_normalized_total_reward
|
1158 |
-
value: 0.
|
1159 |
name: Expert normalized total reward
|
1160 |
- task:
|
1161 |
type: reinforcement-learning
|
@@ -1165,10 +1165,10 @@ model-index:
|
|
1165 |
type: babyai-boss-level
|
1166 |
metrics:
|
1167 |
- type: total_reward
|
1168 |
-
value: 0.
|
1169 |
name: Total reward
|
1170 |
- type: expert_normalized_total_reward
|
1171 |
-
value: 0.
|
1172 |
name: Expert normalized total reward
|
1173 |
- task:
|
1174 |
type: reinforcement-learning
|
@@ -1178,7 +1178,7 @@ model-index:
|
|
1178 |
type: babyai-find-obj-s5
|
1179 |
metrics:
|
1180 |
- type: total_reward
|
1181 |
-
value: 0.
|
1182 |
name: Total reward
|
1183 |
- type: expert_normalized_total_reward
|
1184 |
value: 1.00 +/- 0.04
|
@@ -1191,10 +1191,10 @@ model-index:
|
|
1191 |
type: babyai-go-to-door
|
1192 |
metrics:
|
1193 |
- type: total_reward
|
1194 |
-
value: 0.99 +/- 0.
|
1195 |
name: Total reward
|
1196 |
- type: expert_normalized_total_reward
|
1197 |
-
value: 1.00 +/- 0.
|
1198 |
name: Expert normalized total reward
|
1199 |
- task:
|
1200 |
type: reinforcement-learning
|
@@ -1204,10 +1204,10 @@ model-index:
|
|
1204 |
type: babyai-go-to-imp-unlock
|
1205 |
metrics:
|
1206 |
- type: total_reward
|
1207 |
-
value: 0.
|
1208 |
name: Total reward
|
1209 |
- type: expert_normalized_total_reward
|
1210 |
-
value: 0.
|
1211 |
name: Expert normalized total reward
|
1212 |
- task:
|
1213 |
type: reinforcement-learning
|
@@ -1217,10 +1217,10 @@ model-index:
|
|
1217 |
type: babyai-go-to-local
|
1218 |
metrics:
|
1219 |
- type: total_reward
|
1220 |
-
value: 0.
|
1221 |
name: Total reward
|
1222 |
- type: expert_normalized_total_reward
|
1223 |
-
value: 0.
|
1224 |
name: Expert normalized total reward
|
1225 |
- task:
|
1226 |
type: reinforcement-learning
|
@@ -1233,7 +1233,7 @@ model-index:
|
|
1233 |
value: 0.98 +/- 0.04
|
1234 |
name: Total reward
|
1235 |
- type: expert_normalized_total_reward
|
1236 |
-
value: 0.
|
1237 |
name: Expert normalized total reward
|
1238 |
- task:
|
1239 |
type: reinforcement-learning
|
@@ -1243,10 +1243,10 @@ model-index:
|
|
1243 |
type: babyai-go-to-obj
|
1244 |
metrics:
|
1245 |
- type: total_reward
|
1246 |
-
value: 0.
|
1247 |
name: Total reward
|
1248 |
- type: expert_normalized_total_reward
|
1249 |
-
value:
|
1250 |
name: Expert normalized total reward
|
1251 |
- task:
|
1252 |
type: reinforcement-learning
|
@@ -1256,10 +1256,10 @@ model-index:
|
|
1256 |
type: babyai-go-to-red-ball-grey
|
1257 |
metrics:
|
1258 |
- type: total_reward
|
1259 |
-
value: 0.
|
1260 |
name: Total reward
|
1261 |
- type: expert_normalized_total_reward
|
1262 |
-
value:
|
1263 |
name: Expert normalized total reward
|
1264 |
- task:
|
1265 |
type: reinforcement-learning
|
@@ -1272,7 +1272,7 @@ model-index:
|
|
1272 |
value: 0.93 +/- 0.03
|
1273 |
name: Total reward
|
1274 |
- type: expert_normalized_total_reward
|
1275 |
-
value: 1.00 +/- 0.
|
1276 |
name: Expert normalized total reward
|
1277 |
- task:
|
1278 |
type: reinforcement-learning
|
@@ -1282,10 +1282,10 @@ model-index:
|
|
1282 |
type: babyai-go-to-red-ball
|
1283 |
metrics:
|
1284 |
- type: total_reward
|
1285 |
-
value: 0.91 +/- 0.
|
1286 |
name: Total reward
|
1287 |
- type: expert_normalized_total_reward
|
1288 |
-
value: 0.98 +/- 0.
|
1289 |
name: Expert normalized total reward
|
1290 |
- task:
|
1291 |
type: reinforcement-learning
|
@@ -1295,10 +1295,10 @@ model-index:
|
|
1295 |
type: babyai-go-to-red-blue-ball
|
1296 |
metrics:
|
1297 |
- type: total_reward
|
1298 |
-
value: 0.
|
1299 |
name: Total reward
|
1300 |
- type: expert_normalized_total_reward
|
1301 |
-
value: 0.
|
1302 |
name: Expert normalized total reward
|
1303 |
- task:
|
1304 |
type: reinforcement-learning
|
@@ -1308,10 +1308,10 @@ model-index:
|
|
1308 |
type: babyai-go-to-seq
|
1309 |
metrics:
|
1310 |
- type: total_reward
|
1311 |
-
value: 0.73 +/- 0.
|
1312 |
name: Total reward
|
1313 |
- type: expert_normalized_total_reward
|
1314 |
-
value: 0.
|
1315 |
name: Expert normalized total reward
|
1316 |
- task:
|
1317 |
type: reinforcement-learning
|
@@ -1321,10 +1321,10 @@ model-index:
|
|
1321 |
type: babyai-go-to
|
1322 |
metrics:
|
1323 |
- type: total_reward
|
1324 |
-
value: 0.
|
1325 |
name: Total reward
|
1326 |
- type: expert_normalized_total_reward
|
1327 |
-
value: 0.
|
1328 |
name: Expert normalized total reward
|
1329 |
- task:
|
1330 |
type: reinforcement-learning
|
@@ -1334,10 +1334,10 @@ model-index:
|
|
1334 |
type: babyai-key-corridor
|
1335 |
metrics:
|
1336 |
- type: total_reward
|
1337 |
-
value: 0.
|
1338 |
name: Total reward
|
1339 |
- type: expert_normalized_total_reward
|
1340 |
-
value: 0.
|
1341 |
name: Expert normalized total reward
|
1342 |
- task:
|
1343 |
type: reinforcement-learning
|
@@ -1347,10 +1347,10 @@ model-index:
|
|
1347 |
type: babyai-mini-boss-level
|
1348 |
metrics:
|
1349 |
- type: total_reward
|
1350 |
-
value: 0.
|
1351 |
name: Total reward
|
1352 |
- type: expert_normalized_total_reward
|
1353 |
-
value: 0.
|
1354 |
name: Expert normalized total reward
|
1355 |
- task:
|
1356 |
type: reinforcement-learning
|
@@ -1360,10 +1360,10 @@ model-index:
|
|
1360 |
type: babyai-move-two-across-s8n9
|
1361 |
metrics:
|
1362 |
- type: total_reward
|
1363 |
-
value: 0.
|
1364 |
name: Total reward
|
1365 |
- type: expert_normalized_total_reward
|
1366 |
-
value: 0.
|
1367 |
name: Expert normalized total reward
|
1368 |
- task:
|
1369 |
type: reinforcement-learning
|
@@ -1373,7 +1373,7 @@ model-index:
|
|
1373 |
type: babyai-one-room-s8
|
1374 |
metrics:
|
1375 |
- type: total_reward
|
1376 |
-
value: 0.92 +/- 0.
|
1377 |
name: Total reward
|
1378 |
- type: expert_normalized_total_reward
|
1379 |
value: 1.00 +/- 0.04
|
@@ -1399,10 +1399,10 @@ model-index:
|
|
1399 |
type: babyai-open-doors-order-n4
|
1400 |
metrics:
|
1401 |
- type: total_reward
|
1402 |
-
value: 0.96 +/- 0.
|
1403 |
name: Total reward
|
1404 |
- type: expert_normalized_total_reward
|
1405 |
-
value: 0.
|
1406 |
name: Expert normalized total reward
|
1407 |
- task:
|
1408 |
type: reinforcement-learning
|
@@ -1412,7 +1412,7 @@ model-index:
|
|
1412 |
type: babyai-open-red-door
|
1413 |
metrics:
|
1414 |
- type: total_reward
|
1415 |
-
value: 0.92 +/- 0.
|
1416 |
name: Total reward
|
1417 |
- type: expert_normalized_total_reward
|
1418 |
value: 1.00 +/- 0.03
|
@@ -1438,10 +1438,10 @@ model-index:
|
|
1438 |
type: babyai-open
|
1439 |
metrics:
|
1440 |
- type: total_reward
|
1441 |
-
value: 0.
|
1442 |
name: Total reward
|
1443 |
- type: expert_normalized_total_reward
|
1444 |
-
value: 0.
|
1445 |
name: Expert normalized total reward
|
1446 |
- task:
|
1447 |
type: reinforcement-learning
|
@@ -1464,10 +1464,10 @@ model-index:
|
|
1464 |
type: babyai-pickup-dist
|
1465 |
metrics:
|
1466 |
- type: total_reward
|
1467 |
-
value: 0.
|
1468 |
name: Total reward
|
1469 |
- type: expert_normalized_total_reward
|
1470 |
-
value: 1.
|
1471 |
name: Expert normalized total reward
|
1472 |
- task:
|
1473 |
type: reinforcement-learning
|
@@ -1477,10 +1477,10 @@ model-index:
|
|
1477 |
type: babyai-pickup-loc
|
1478 |
metrics:
|
1479 |
- type: total_reward
|
1480 |
-
value: 0.
|
1481 |
name: Total reward
|
1482 |
- type: expert_normalized_total_reward
|
1483 |
-
value: 0.
|
1484 |
name: Expert normalized total reward
|
1485 |
- task:
|
1486 |
type: reinforcement-learning
|
@@ -1490,10 +1490,10 @@ model-index:
|
|
1490 |
type: babyai-pickup
|
1491 |
metrics:
|
1492 |
- type: total_reward
|
1493 |
-
value: 0.
|
1494 |
name: Total reward
|
1495 |
- type: expert_normalized_total_reward
|
1496 |
-
value: 0.
|
1497 |
name: Expert normalized total reward
|
1498 |
- task:
|
1499 |
type: reinforcement-learning
|
@@ -1503,10 +1503,10 @@ model-index:
|
|
1503 |
type: babyai-put-next-local
|
1504 |
metrics:
|
1505 |
- type: total_reward
|
1506 |
-
value: 0.
|
1507 |
name: Total reward
|
1508 |
- type: expert_normalized_total_reward
|
1509 |
-
value: 0.
|
1510 |
name: Expert normalized total reward
|
1511 |
- task:
|
1512 |
type: reinforcement-learning
|
@@ -1516,10 +1516,10 @@ model-index:
|
|
1516 |
type: babyai-put-next
|
1517 |
metrics:
|
1518 |
- type: total_reward
|
1519 |
-
value: 0.
|
1520 |
name: Total reward
|
1521 |
- type: expert_normalized_total_reward
|
1522 |
-
value: 0.
|
1523 |
name: Expert normalized total reward
|
1524 |
- task:
|
1525 |
type: reinforcement-learning
|
@@ -1529,10 +1529,10 @@ model-index:
|
|
1529 |
type: babyai-synth-loc
|
1530 |
metrics:
|
1531 |
- type: total_reward
|
1532 |
-
value: 0.
|
1533 |
name: Total reward
|
1534 |
- type: expert_normalized_total_reward
|
1535 |
-
value: 0.
|
1536 |
name: Expert normalized total reward
|
1537 |
- task:
|
1538 |
type: reinforcement-learning
|
@@ -1542,10 +1542,10 @@ model-index:
|
|
1542 |
type: babyai-synth-seq
|
1543 |
metrics:
|
1544 |
- type: total_reward
|
1545 |
-
value: 0.57 +/- 0.
|
1546 |
name: Total reward
|
1547 |
- type: expert_normalized_total_reward
|
1548 |
-
value: 0.
|
1549 |
name: Expert normalized total reward
|
1550 |
- task:
|
1551 |
type: reinforcement-learning
|
@@ -1555,10 +1555,10 @@ model-index:
|
|
1555 |
type: babyai-synth
|
1556 |
metrics:
|
1557 |
- type: total_reward
|
1558 |
-
value: 0.
|
1559 |
name: Total reward
|
1560 |
- type: expert_normalized_total_reward
|
1561 |
-
value: 0.
|
1562 |
name: Expert normalized total reward
|
1563 |
- task:
|
1564 |
type: reinforcement-learning
|
@@ -1568,10 +1568,10 @@ model-index:
|
|
1568 |
type: babyai-unblock-pickup
|
1569 |
metrics:
|
1570 |
- type: total_reward
|
1571 |
-
value: 0.
|
1572 |
name: Total reward
|
1573 |
- type: expert_normalized_total_reward
|
1574 |
-
value: 0.
|
1575 |
name: Expert normalized total reward
|
1576 |
- task:
|
1577 |
type: reinforcement-learning
|
@@ -1594,10 +1594,10 @@ model-index:
|
|
1594 |
type: babyai-unlock-pickup
|
1595 |
metrics:
|
1596 |
- type: total_reward
|
1597 |
-
value: 0.
|
1598 |
name: Total reward
|
1599 |
- type: expert_normalized_total_reward
|
1600 |
-
value: 1.
|
1601 |
name: Expert normalized total reward
|
1602 |
- task:
|
1603 |
type: reinforcement-learning
|
@@ -1607,10 +1607,10 @@ model-index:
|
|
1607 |
type: babyai-unlock-to-unlock
|
1608 |
metrics:
|
1609 |
- type: total_reward
|
1610 |
-
value: 0.
|
1611 |
name: Total reward
|
1612 |
- type: expert_normalized_total_reward
|
1613 |
-
value: 0.
|
1614 |
name: Expert normalized total reward
|
1615 |
- task:
|
1616 |
type: reinforcement-learning
|
@@ -1620,10 +1620,10 @@ model-index:
|
|
1620 |
type: babyai-unlock
|
1621 |
metrics:
|
1622 |
- type: total_reward
|
1623 |
-
value: 0.
|
1624 |
name: Total reward
|
1625 |
- type: expert_normalized_total_reward
|
1626 |
-
value: 0.
|
1627 |
name: Expert normalized total reward
|
1628 |
- task:
|
1629 |
type: reinforcement-learning
|
@@ -1633,10 +1633,10 @@ model-index:
|
|
1633 |
type: metaworld-assembly
|
1634 |
metrics:
|
1635 |
- type: total_reward
|
1636 |
-
value:
|
1637 |
name: Total reward
|
1638 |
- type: expert_normalized_total_reward
|
1639 |
-
value: 0.
|
1640 |
name: Expert normalized total reward
|
1641 |
- task:
|
1642 |
type: reinforcement-learning
|
@@ -1646,7 +1646,7 @@ model-index:
|
|
1646 |
type: metaworld-basketball
|
1647 |
metrics:
|
1648 |
- type: total_reward
|
1649 |
-
value: 1.
|
1650 |
name: Total reward
|
1651 |
- type: expert_normalized_total_reward
|
1652 |
value: -0.00 +/- 0.00
|
@@ -1659,10 +1659,10 @@ model-index:
|
|
1659 |
type: metaworld-bin-picking
|
1660 |
metrics:
|
1661 |
- type: total_reward
|
1662 |
-
value:
|
1663 |
name: Total reward
|
1664 |
- type: expert_normalized_total_reward
|
1665 |
-
value: 0.
|
1666 |
name: Expert normalized total reward
|
1667 |
- task:
|
1668 |
type: reinforcement-learning
|
@@ -1672,10 +1672,10 @@ model-index:
|
|
1672 |
type: metaworld-box-close
|
1673 |
metrics:
|
1674 |
- type: total_reward
|
1675 |
-
value:
|
1676 |
name: Total reward
|
1677 |
- type: expert_normalized_total_reward
|
1678 |
-
value: 0.
|
1679 |
name: Expert normalized total reward
|
1680 |
- task:
|
1681 |
type: reinforcement-learning
|
@@ -1685,10 +1685,10 @@ model-index:
|
|
1685 |
type: metaworld-button-press-topdown-wall
|
1686 |
metrics:
|
1687 |
- type: total_reward
|
1688 |
-
value:
|
1689 |
name: Total reward
|
1690 |
- type: expert_normalized_total_reward
|
1691 |
-
value: 0.
|
1692 |
name: Expert normalized total reward
|
1693 |
- task:
|
1694 |
type: reinforcement-learning
|
@@ -1698,10 +1698,10 @@ model-index:
|
|
1698 |
type: metaworld-button-press-topdown
|
1699 |
metrics:
|
1700 |
- type: total_reward
|
1701 |
-
value:
|
1702 |
name: Total reward
|
1703 |
- type: expert_normalized_total_reward
|
1704 |
-
value: 0.
|
1705 |
name: Expert normalized total reward
|
1706 |
- task:
|
1707 |
type: reinforcement-learning
|
@@ -1711,10 +1711,10 @@ model-index:
|
|
1711 |
type: metaworld-button-press-wall
|
1712 |
metrics:
|
1713 |
- type: total_reward
|
1714 |
-
value:
|
1715 |
name: Total reward
|
1716 |
- type: expert_normalized_total_reward
|
1717 |
-
value: 0.
|
1718 |
name: Expert normalized total reward
|
1719 |
- task:
|
1720 |
type: reinforcement-learning
|
@@ -1724,10 +1724,10 @@ model-index:
|
|
1724 |
type: metaworld-button-press
|
1725 |
metrics:
|
1726 |
- type: total_reward
|
1727 |
-
value:
|
1728 |
name: Total reward
|
1729 |
- type: expert_normalized_total_reward
|
1730 |
-
value: 0.
|
1731 |
name: Expert normalized total reward
|
1732 |
- task:
|
1733 |
type: reinforcement-learning
|
@@ -1737,10 +1737,10 @@ model-index:
|
|
1737 |
type: metaworld-coffee-button
|
1738 |
metrics:
|
1739 |
- type: total_reward
|
1740 |
-
value:
|
1741 |
name: Total reward
|
1742 |
- type: expert_normalized_total_reward
|
1743 |
-
value: 0.
|
1744 |
name: Expert normalized total reward
|
1745 |
- task:
|
1746 |
type: reinforcement-learning
|
@@ -1750,10 +1750,10 @@ model-index:
|
|
1750 |
type: metaworld-coffee-pull
|
1751 |
metrics:
|
1752 |
- type: total_reward
|
1753 |
-
value:
|
1754 |
name: Total reward
|
1755 |
- type: expert_normalized_total_reward
|
1756 |
-
value: 0.
|
1757 |
name: Expert normalized total reward
|
1758 |
- task:
|
1759 |
type: reinforcement-learning
|
@@ -1763,10 +1763,10 @@ model-index:
|
|
1763 |
type: metaworld-coffee-push
|
1764 |
metrics:
|
1765 |
- type: total_reward
|
1766 |
-
value:
|
1767 |
name: Total reward
|
1768 |
- type: expert_normalized_total_reward
|
1769 |
-
value: 0.
|
1770 |
name: Expert normalized total reward
|
1771 |
- task:
|
1772 |
type: reinforcement-learning
|
@@ -1776,10 +1776,10 @@ model-index:
|
|
1776 |
type: metaworld-dial-turn
|
1777 |
metrics:
|
1778 |
- type: total_reward
|
1779 |
-
value:
|
1780 |
name: Total reward
|
1781 |
- type: expert_normalized_total_reward
|
1782 |
-
value: 0.
|
1783 |
name: Expert normalized total reward
|
1784 |
- task:
|
1785 |
type: reinforcement-learning
|
@@ -1789,10 +1789,10 @@ model-index:
|
|
1789 |
type: metaworld-disassemble
|
1790 |
metrics:
|
1791 |
- type: total_reward
|
1792 |
-
value:
|
1793 |
name: Total reward
|
1794 |
- type: expert_normalized_total_reward
|
1795 |
-
value:
|
1796 |
name: Expert normalized total reward
|
1797 |
- task:
|
1798 |
type: reinforcement-learning
|
@@ -1802,7 +1802,7 @@ model-index:
|
|
1802 |
type: metaworld-door-close
|
1803 |
metrics:
|
1804 |
- type: total_reward
|
1805 |
-
value:
|
1806 |
name: Total reward
|
1807 |
- type: expert_normalized_total_reward
|
1808 |
value: 1.00 +/- 0.06
|
@@ -1815,7 +1815,7 @@ model-index:
|
|
1815 |
type: metaworld-door-lock
|
1816 |
metrics:
|
1817 |
- type: total_reward
|
1818 |
-
value:
|
1819 |
name: Total reward
|
1820 |
- type: expert_normalized_total_reward
|
1821 |
value: 0.81 +/- 0.28
|
@@ -1828,10 +1828,10 @@ model-index:
|
|
1828 |
type: metaworld-door-open
|
1829 |
metrics:
|
1830 |
- type: total_reward
|
1831 |
-
value:
|
1832 |
name: Total reward
|
1833 |
- type: expert_normalized_total_reward
|
1834 |
-
value: 0.
|
1835 |
name: Expert normalized total reward
|
1836 |
- task:
|
1837 |
type: reinforcement-learning
|
@@ -1841,10 +1841,10 @@ model-index:
|
|
1841 |
type: metaworld-door-unlock
|
1842 |
metrics:
|
1843 |
- type: total_reward
|
1844 |
-
value:
|
1845 |
name: Total reward
|
1846 |
- type: expert_normalized_total_reward
|
1847 |
-
value: 0.
|
1848 |
name: Expert normalized total reward
|
1849 |
- task:
|
1850 |
type: reinforcement-learning
|
@@ -1854,10 +1854,10 @@ model-index:
|
|
1854 |
type: metaworld-drawer-close
|
1855 |
metrics:
|
1856 |
- type: total_reward
|
1857 |
-
value:
|
1858 |
name: Total reward
|
1859 |
- type: expert_normalized_total_reward
|
1860 |
-
value: 0.
|
1861 |
name: Expert normalized total reward
|
1862 |
- task:
|
1863 |
type: reinforcement-learning
|
@@ -1867,10 +1867,10 @@ model-index:
|
|
1867 |
type: metaworld-drawer-open
|
1868 |
metrics:
|
1869 |
- type: total_reward
|
1870 |
-
value:
|
1871 |
name: Total reward
|
1872 |
- type: expert_normalized_total_reward
|
1873 |
-
value: 0.
|
1874 |
name: Expert normalized total reward
|
1875 |
- task:
|
1876 |
type: reinforcement-learning
|
@@ -1880,10 +1880,10 @@ model-index:
|
|
1880 |
type: metaworld-faucet-close
|
1881 |
metrics:
|
1882 |
- type: total_reward
|
1883 |
-
value:
|
1884 |
name: Total reward
|
1885 |
- type: expert_normalized_total_reward
|
1886 |
-
value: 0.
|
1887 |
name: Expert normalized total reward
|
1888 |
- task:
|
1889 |
type: reinforcement-learning
|
@@ -1893,10 +1893,10 @@ model-index:
|
|
1893 |
type: metaworld-faucet-open
|
1894 |
metrics:
|
1895 |
- type: total_reward
|
1896 |
-
value:
|
1897 |
name: Total reward
|
1898 |
- type: expert_normalized_total_reward
|
1899 |
-
value: 0.
|
1900 |
name: Expert normalized total reward
|
1901 |
- task:
|
1902 |
type: reinforcement-learning
|
@@ -1906,10 +1906,10 @@ model-index:
|
|
1906 |
type: metaworld-hammer
|
1907 |
metrics:
|
1908 |
- type: total_reward
|
1909 |
-
value:
|
1910 |
name: Total reward
|
1911 |
- type: expert_normalized_total_reward
|
1912 |
-
value:
|
1913 |
name: Expert normalized total reward
|
1914 |
- task:
|
1915 |
type: reinforcement-learning
|
@@ -1919,10 +1919,10 @@ model-index:
|
|
1919 |
type: metaworld-hand-insert
|
1920 |
metrics:
|
1921 |
- type: total_reward
|
1922 |
-
value:
|
1923 |
name: Total reward
|
1924 |
- type: expert_normalized_total_reward
|
1925 |
-
value: 0.
|
1926 |
name: Expert normalized total reward
|
1927 |
- task:
|
1928 |
type: reinforcement-learning
|
@@ -1932,10 +1932,10 @@ model-index:
|
|
1932 |
type: metaworld-handle-press-side
|
1933 |
metrics:
|
1934 |
- type: total_reward
|
1935 |
-
value:
|
1936 |
name: Total reward
|
1937 |
- type: expert_normalized_total_reward
|
1938 |
-
value: 0.
|
1939 |
name: Expert normalized total reward
|
1940 |
- task:
|
1941 |
type: reinforcement-learning
|
@@ -1945,10 +1945,10 @@ model-index:
|
|
1945 |
type: metaworld-handle-press
|
1946 |
metrics:
|
1947 |
- type: total_reward
|
1948 |
-
value:
|
1949 |
name: Total reward
|
1950 |
- type: expert_normalized_total_reward
|
1951 |
-
value: 0.
|
1952 |
name: Expert normalized total reward
|
1953 |
- task:
|
1954 |
type: reinforcement-learning
|
@@ -1958,10 +1958,10 @@ model-index:
|
|
1958 |
type: metaworld-handle-pull-side
|
1959 |
metrics:
|
1960 |
- type: total_reward
|
1961 |
-
value:
|
1962 |
name: Total reward
|
1963 |
- type: expert_normalized_total_reward
|
1964 |
-
value: 0.
|
1965 |
name: Expert normalized total reward
|
1966 |
- task:
|
1967 |
type: reinforcement-learning
|
@@ -1971,10 +1971,10 @@ model-index:
|
|
1971 |
type: metaworld-handle-pull
|
1972 |
metrics:
|
1973 |
- type: total_reward
|
1974 |
-
value:
|
1975 |
name: Total reward
|
1976 |
- type: expert_normalized_total_reward
|
1977 |
-
value: 0.
|
1978 |
name: Expert normalized total reward
|
1979 |
- task:
|
1980 |
type: reinforcement-learning
|
@@ -1984,10 +1984,10 @@ model-index:
|
|
1984 |
type: metaworld-lever-pull
|
1985 |
metrics:
|
1986 |
- type: total_reward
|
1987 |
-
value: 250.
|
1988 |
name: Total reward
|
1989 |
- type: expert_normalized_total_reward
|
1990 |
-
value: 0.34 +/- 0.
|
1991 |
name: Expert normalized total reward
|
1992 |
- task:
|
1993 |
type: reinforcement-learning
|
@@ -1997,10 +1997,10 @@ model-index:
|
|
1997 |
type: metaworld-peg-insert-side
|
1998 |
metrics:
|
1999 |
- type: total_reward
|
2000 |
-
value:
|
2001 |
name: Total reward
|
2002 |
- type: expert_normalized_total_reward
|
2003 |
-
value: 0.
|
2004 |
name: Expert normalized total reward
|
2005 |
- task:
|
2006 |
type: reinforcement-learning
|
@@ -2010,10 +2010,10 @@ model-index:
|
|
2010 |
type: metaworld-peg-unplug-side
|
2011 |
metrics:
|
2012 |
- type: total_reward
|
2013 |
-
value:
|
2014 |
name: Total reward
|
2015 |
- type: expert_normalized_total_reward
|
2016 |
-
value: 0.
|
2017 |
name: Expert normalized total reward
|
2018 |
- task:
|
2019 |
type: reinforcement-learning
|
@@ -2036,10 +2036,10 @@ model-index:
|
|
2036 |
type: metaworld-pick-place-wall
|
2037 |
metrics:
|
2038 |
- type: total_reward
|
2039 |
-
value:
|
2040 |
name: Total reward
|
2041 |
- type: expert_normalized_total_reward
|
2042 |
-
value: 0.
|
2043 |
name: Expert normalized total reward
|
2044 |
- task:
|
2045 |
type: reinforcement-learning
|
@@ -2049,10 +2049,10 @@ model-index:
|
|
2049 |
type: metaworld-pick-place
|
2050 |
metrics:
|
2051 |
- type: total_reward
|
2052 |
-
value:
|
2053 |
name: Total reward
|
2054 |
- type: expert_normalized_total_reward
|
2055 |
-
value: 0.
|
2056 |
name: Expert normalized total reward
|
2057 |
- task:
|
2058 |
type: reinforcement-learning
|
@@ -2062,10 +2062,10 @@ model-index:
|
|
2062 |
type: metaworld-plate-slide-back-side
|
2063 |
metrics:
|
2064 |
- type: total_reward
|
2065 |
-
value:
|
2066 |
name: Total reward
|
2067 |
- type: expert_normalized_total_reward
|
2068 |
-
value: 0.
|
2069 |
name: Expert normalized total reward
|
2070 |
- task:
|
2071 |
type: reinforcement-learning
|
@@ -2075,7 +2075,7 @@ model-index:
|
|
2075 |
type: metaworld-plate-slide-back
|
2076 |
metrics:
|
2077 |
- type: total_reward
|
2078 |
-
value:
|
2079 |
name: Total reward
|
2080 |
- type: expert_normalized_total_reward
|
2081 |
value: 0.24 +/- 0.00
|
@@ -2088,7 +2088,7 @@ model-index:
|
|
2088 |
type: metaworld-plate-slide-side
|
2089 |
metrics:
|
2090 |
- type: total_reward
|
2091 |
-
value: 122.
|
2092 |
name: Total reward
|
2093 |
- type: expert_normalized_total_reward
|
2094 |
value: 0.16 +/- 0.04
|
@@ -2101,10 +2101,10 @@ model-index:
|
|
2101 |
type: metaworld-plate-slide
|
2102 |
metrics:
|
2103 |
- type: total_reward
|
2104 |
-
value:
|
2105 |
name: Total reward
|
2106 |
- type: expert_normalized_total_reward
|
2107 |
-
value: 0.
|
2108 |
name: Expert normalized total reward
|
2109 |
- task:
|
2110 |
type: reinforcement-learning
|
@@ -2114,10 +2114,10 @@ model-index:
|
|
2114 |
type: metaworld-push-back
|
2115 |
metrics:
|
2116 |
- type: total_reward
|
2117 |
-
value:
|
2118 |
name: Total reward
|
2119 |
- type: expert_normalized_total_reward
|
2120 |
-
value:
|
2121 |
name: Expert normalized total reward
|
2122 |
- task:
|
2123 |
type: reinforcement-learning
|
@@ -2127,10 +2127,10 @@ model-index:
|
|
2127 |
type: metaworld-push-wall
|
2128 |
metrics:
|
2129 |
- type: total_reward
|
2130 |
-
value:
|
2131 |
name: Total reward
|
2132 |
- type: expert_normalized_total_reward
|
2133 |
-
value: 0.
|
2134 |
name: Expert normalized total reward
|
2135 |
- task:
|
2136 |
type: reinforcement-learning
|
@@ -2140,10 +2140,10 @@ model-index:
|
|
2140 |
type: metaworld-push
|
2141 |
metrics:
|
2142 |
- type: total_reward
|
2143 |
-
value:
|
2144 |
name: Total reward
|
2145 |
- type: expert_normalized_total_reward
|
2146 |
-
value: 0.
|
2147 |
name: Expert normalized total reward
|
2148 |
- task:
|
2149 |
type: reinforcement-learning
|
@@ -2153,10 +2153,10 @@ model-index:
|
|
2153 |
type: metaworld-reach-wall
|
2154 |
metrics:
|
2155 |
- type: total_reward
|
2156 |
-
value:
|
2157 |
name: Total reward
|
2158 |
- type: expert_normalized_total_reward
|
2159 |
-
value: 0.
|
2160 |
name: Expert normalized total reward
|
2161 |
- task:
|
2162 |
type: reinforcement-learning
|
@@ -2166,10 +2166,10 @@ model-index:
|
|
2166 |
type: metaworld-reach
|
2167 |
metrics:
|
2168 |
- type: total_reward
|
2169 |
-
value:
|
2170 |
name: Total reward
|
2171 |
- type: expert_normalized_total_reward
|
2172 |
-
value: 0.
|
2173 |
name: Expert normalized total reward
|
2174 |
- task:
|
2175 |
type: reinforcement-learning
|
@@ -2179,10 +2179,10 @@ model-index:
|
|
2179 |
type: metaworld-shelf-place
|
2180 |
metrics:
|
2181 |
- type: total_reward
|
2182 |
-
value:
|
2183 |
name: Total reward
|
2184 |
- type: expert_normalized_total_reward
|
2185 |
-
value: 0.
|
2186 |
name: Expert normalized total reward
|
2187 |
- task:
|
2188 |
type: reinforcement-learning
|
@@ -2192,10 +2192,10 @@ model-index:
|
|
2192 |
type: metaworld-soccer
|
2193 |
metrics:
|
2194 |
- type: total_reward
|
2195 |
-
value:
|
2196 |
name: Total reward
|
2197 |
- type: expert_normalized_total_reward
|
2198 |
-
value: 0.
|
2199 |
name: Expert normalized total reward
|
2200 |
- task:
|
2201 |
type: reinforcement-learning
|
@@ -2205,10 +2205,10 @@ model-index:
|
|
2205 |
type: metaworld-stick-pull
|
2206 |
metrics:
|
2207 |
- type: total_reward
|
2208 |
-
value:
|
2209 |
name: Total reward
|
2210 |
- type: expert_normalized_total_reward
|
2211 |
-
value: 0.
|
2212 |
name: Expert normalized total reward
|
2213 |
- task:
|
2214 |
type: reinforcement-learning
|
@@ -2218,10 +2218,10 @@ model-index:
|
|
2218 |
type: metaworld-stick-push
|
2219 |
metrics:
|
2220 |
- type: total_reward
|
2221 |
-
value:
|
2222 |
name: Total reward
|
2223 |
- type: expert_normalized_total_reward
|
2224 |
-
value: 0.
|
2225 |
name: Expert normalized total reward
|
2226 |
- task:
|
2227 |
type: reinforcement-learning
|
@@ -2231,10 +2231,10 @@ model-index:
|
|
2231 |
type: metaworld-sweep-into
|
2232 |
metrics:
|
2233 |
- type: total_reward
|
2234 |
-
value:
|
2235 |
name: Total reward
|
2236 |
- type: expert_normalized_total_reward
|
2237 |
-
value: 0.
|
2238 |
name: Expert normalized total reward
|
2239 |
- task:
|
2240 |
type: reinforcement-learning
|
@@ -2244,10 +2244,10 @@ model-index:
|
|
2244 |
type: metaworld-sweep
|
2245 |
metrics:
|
2246 |
- type: total_reward
|
2247 |
-
value: 15.
|
2248 |
name: Total reward
|
2249 |
- type: expert_normalized_total_reward
|
2250 |
-
value: 0.01 +/- 0.
|
2251 |
name: Expert normalized total reward
|
2252 |
- task:
|
2253 |
type: reinforcement-learning
|
@@ -2257,10 +2257,10 @@ model-index:
|
|
2257 |
type: metaworld-window-close
|
2258 |
metrics:
|
2259 |
- type: total_reward
|
2260 |
-
value:
|
2261 |
name: Total reward
|
2262 |
- type: expert_normalized_total_reward
|
2263 |
-
value: 0.
|
2264 |
name: Expert normalized total reward
|
2265 |
- task:
|
2266 |
type: reinforcement-learning
|
@@ -2270,10 +2270,10 @@ model-index:
|
|
2270 |
type: metaworld-window-open
|
2271 |
metrics:
|
2272 |
- type: total_reward
|
2273 |
-
value:
|
2274 |
name: Total reward
|
2275 |
- type: expert_normalized_total_reward
|
2276 |
-
value:
|
2277 |
name: Expert normalized total reward
|
2278 |
- task:
|
2279 |
type: reinforcement-learning
|
@@ -2283,10 +2283,10 @@ model-index:
|
|
2283 |
type: mujoco-ant
|
2284 |
metrics:
|
2285 |
- type: total_reward
|
2286 |
-
value:
|
2287 |
name: Total reward
|
2288 |
- type: expert_normalized_total_reward
|
2289 |
-
value: 0.
|
2290 |
name: Expert normalized total reward
|
2291 |
- task:
|
2292 |
type: reinforcement-learning
|
@@ -2296,10 +2296,10 @@ model-index:
|
|
2296 |
type: mujoco-doublependulum
|
2297 |
metrics:
|
2298 |
- type: total_reward
|
2299 |
-
value:
|
2300 |
name: Total reward
|
2301 |
- type: expert_normalized_total_reward
|
2302 |
-
value: 0.
|
2303 |
name: Expert normalized total reward
|
2304 |
- task:
|
2305 |
type: reinforcement-learning
|
@@ -2309,10 +2309,10 @@ model-index:
|
|
2309 |
type: mujoco-halfcheetah
|
2310 |
metrics:
|
2311 |
- type: total_reward
|
2312 |
-
value:
|
2313 |
name: Total reward
|
2314 |
- type: expert_normalized_total_reward
|
2315 |
-
value: 0.
|
2316 |
name: Expert normalized total reward
|
2317 |
- task:
|
2318 |
type: reinforcement-learning
|
@@ -2322,10 +2322,10 @@ model-index:
|
|
2322 |
type: mujoco-hopper
|
2323 |
metrics:
|
2324 |
- type: total_reward
|
2325 |
-
value:
|
2326 |
name: Total reward
|
2327 |
- type: expert_normalized_total_reward
|
2328 |
-
value: 0.
|
2329 |
name: Expert normalized total reward
|
2330 |
- task:
|
2331 |
type: reinforcement-learning
|
@@ -2335,7 +2335,7 @@ model-index:
|
|
2335 |
type: mujoco-humanoid
|
2336 |
metrics:
|
2337 |
- type: total_reward
|
2338 |
-
value:
|
2339 |
name: Total reward
|
2340 |
- type: expert_normalized_total_reward
|
2341 |
value: 0.09 +/- 0.02
|
@@ -2348,10 +2348,10 @@ model-index:
|
|
2348 |
type: mujoco-pendulum
|
2349 |
metrics:
|
2350 |
- type: total_reward
|
2351 |
-
value:
|
2352 |
name: Total reward
|
2353 |
- type: expert_normalized_total_reward
|
2354 |
-
value: 0.
|
2355 |
name: Expert normalized total reward
|
2356 |
- task:
|
2357 |
type: reinforcement-learning
|
@@ -2361,10 +2361,10 @@ model-index:
|
|
2361 |
type: mujoco-pusher
|
2362 |
metrics:
|
2363 |
- type: total_reward
|
2364 |
-
value: -
|
2365 |
name: Total reward
|
2366 |
- type: expert_normalized_total_reward
|
2367 |
-
value:
|
2368 |
name: Expert normalized total reward
|
2369 |
- task:
|
2370 |
type: reinforcement-learning
|
@@ -2374,10 +2374,10 @@ model-index:
|
|
2374 |
type: mujoco-reacher
|
2375 |
metrics:
|
2376 |
- type: total_reward
|
2377 |
-
value: -
|
2378 |
name: Total reward
|
2379 |
- type: expert_normalized_total_reward
|
2380 |
-
value:
|
2381 |
name: Expert normalized total reward
|
2382 |
- task:
|
2383 |
type: reinforcement-learning
|
@@ -2387,10 +2387,10 @@ model-index:
|
|
2387 |
type: mujoco-standup
|
2388 |
metrics:
|
2389 |
- type: total_reward
|
2390 |
-
value:
|
2391 |
name: Total reward
|
2392 |
- type: expert_normalized_total_reward
|
2393 |
-
value: 0.
|
2394 |
name: Expert normalized total reward
|
2395 |
- task:
|
2396 |
type: reinforcement-learning
|
@@ -2400,10 +2400,10 @@ model-index:
|
|
2400 |
type: mujoco-swimmer
|
2401 |
metrics:
|
2402 |
- type: total_reward
|
2403 |
-
value:
|
2404 |
name: Total reward
|
2405 |
- type: expert_normalized_total_reward
|
2406 |
-
value: 1.
|
2407 |
name: Expert normalized total reward
|
2408 |
- task:
|
2409 |
type: reinforcement-learning
|
@@ -2413,10 +2413,10 @@ model-index:
|
|
2413 |
type: mujoco-walker
|
2414 |
metrics:
|
2415 |
- type: total_reward
|
2416 |
-
value:
|
2417 |
name: Total reward
|
2418 |
- type: expert_normalized_total_reward
|
2419 |
-
value:
|
2420 |
name: Expert normalized total reward
|
2421 |
---
|
2422 |
|
@@ -2440,7 +2440,8 @@ This is a multi-modal and multi-task model.
|
|
2440 |
## Training
|
2441 |
|
2442 |
<details>
|
2443 |
-
|
|
|
2444 |
- Alien
|
2445 |
- Amidar
|
2446 |
- Assault
|
@@ -2610,4 +2611,3 @@ from transformers import AutoModelForCausalLM
|
|
2610 |
|
2611 |
model = AutoModelForCausalLM.from_pretrained("jat-project/jat")
|
2612 |
```
|
2613 |
-
|
|
|
174 |
value: 0.14 [0.14, 0.15]
|
175 |
name: IQM expert normalized total reward
|
176 |
- type: iqm_human_normalized_total_reward
|
177 |
+
value: 0.38 [0.37, 0.39]
|
178 |
name: IQM human normalized total reward
|
179 |
- task:
|
180 |
type: reinforcement-learning
|
|
|
194 |
type: metaworld
|
195 |
metrics:
|
196 |
- type: iqm_expert_normalized_total_reward
|
197 |
+
value: 0.65 [0.64, 0.67]
|
198 |
name: IQM expert normalized total reward
|
199 |
- task:
|
200 |
type: reinforcement-learning
|
|
|
204 |
type: mujoco
|
205 |
metrics:
|
206 |
- type: iqm_expert_normalized_total_reward
|
207 |
+
value: 0.85 [0.83, 0.86]
|
208 |
name: IQM expert normalized total reward
|
209 |
- task:
|
210 |
type: reinforcement-learning
|
|
|
214 |
type: atari-alien
|
215 |
metrics:
|
216 |
- type: total_reward
|
217 |
+
value: 1518.70 +/- 568.14
|
218 |
name: Total reward
|
219 |
- type: expert_normalized_total_reward
|
220 |
+
value: 0.08 +/- 0.03
|
221 |
name: Expert normalized total reward
|
222 |
- type: human_normalized_total_reward
|
223 |
+
value: 0.19 +/- 0.08
|
224 |
name: Human normalized total reward
|
225 |
- task:
|
226 |
type: reinforcement-learning
|
|
|
230 |
type: atari-amidar
|
231 |
metrics:
|
232 |
- type: total_reward
|
233 |
+
value: 89.17 +/- 78.73
|
234 |
name: Total reward
|
235 |
- type: expert_normalized_total_reward
|
236 |
+
value: 0.04 +/- 0.04
|
237 |
name: Expert normalized total reward
|
238 |
- type: human_normalized_total_reward
|
239 |
+
value: 0.05 +/- 0.05
|
240 |
name: Human normalized total reward
|
241 |
- task:
|
242 |
type: reinforcement-learning
|
|
|
246 |
type: atari-assault
|
247 |
metrics:
|
248 |
- type: total_reward
|
249 |
+
value: 1676.91 +/- 780.73
|
250 |
name: Total reward
|
251 |
- type: expert_normalized_total_reward
|
252 |
value: 0.09 +/- 0.05
|
253 |
name: Expert normalized total reward
|
254 |
- type: human_normalized_total_reward
|
255 |
+
value: 2.80 +/- 1.50
|
256 |
name: Human normalized total reward
|
257 |
- task:
|
258 |
type: reinforcement-learning
|
|
|
262 |
type: atari-asterix
|
263 |
metrics:
|
264 |
- type: total_reward
|
265 |
+
value: 844.50 +/- 546.85
|
266 |
name: Total reward
|
267 |
- type: expert_normalized_total_reward
|
268 |
+
value: 0.18 +/- 0.16
|
269 |
name: Expert normalized total reward
|
270 |
- type: human_normalized_total_reward
|
271 |
+
value: 0.08 +/- 0.07
|
272 |
name: Human normalized total reward
|
273 |
- task:
|
274 |
type: reinforcement-learning
|
|
|
278 |
type: atari-asteroids
|
279 |
metrics:
|
280 |
- type: total_reward
|
281 |
+
value: 1357.90 +/- 453.01
|
282 |
name: Total reward
|
283 |
- type: expert_normalized_total_reward
|
284 |
value: 0.00 +/- 0.00
|
|
|
294 |
type: atari-atlantis
|
295 |
metrics:
|
296 |
- type: total_reward
|
297 |
+
value: 51843.00 +/- 123857.07
|
298 |
name: Total reward
|
299 |
- type: expert_normalized_total_reward
|
300 |
+
value: 0.13 +/- 0.40
|
301 |
name: Expert normalized total reward
|
302 |
- type: human_normalized_total_reward
|
303 |
+
value: 2.41 +/- 7.66
|
304 |
name: Human normalized total reward
|
305 |
- task:
|
306 |
type: reinforcement-learning
|
|
|
310 |
type: atari-bankheist
|
311 |
metrics:
|
312 |
- type: total_reward
|
313 |
+
value: 977.80 +/- 156.49
|
314 |
name: Total reward
|
315 |
- type: expert_normalized_total_reward
|
316 |
+
value: 0.74 +/- 0.12
|
317 |
name: Expert normalized total reward
|
318 |
- type: human_normalized_total_reward
|
319 |
+
value: 1.30 +/- 0.21
|
320 |
name: Human normalized total reward
|
321 |
- task:
|
322 |
type: reinforcement-learning
|
|
|
326 |
type: atari-battlezone
|
327 |
metrics:
|
328 |
- type: total_reward
|
329 |
+
value: 16780.00 +/- 6926.15
|
330 |
name: Total reward
|
331 |
- type: expert_normalized_total_reward
|
332 |
value: 0.06 +/- 0.02
|
333 |
name: Expert normalized total reward
|
334 |
- type: human_normalized_total_reward
|
335 |
+
value: 0.45 +/- 0.19
|
336 |
name: Human normalized total reward
|
337 |
- task:
|
338 |
type: reinforcement-learning
|
|
|
342 |
type: atari-beamrider
|
343 |
metrics:
|
344 |
- type: total_reward
|
345 |
+
value: 768.36 +/- 364.06
|
346 |
name: Total reward
|
347 |
- type: expert_normalized_total_reward
|
348 |
value: 0.01 +/- 0.01
|
349 |
name: Expert normalized total reward
|
350 |
- type: human_normalized_total_reward
|
351 |
+
value: 0.02 +/- 0.02
|
352 |
name: Human normalized total reward
|
353 |
- task:
|
354 |
type: reinforcement-learning
|
|
|
358 |
type: atari-berzerk
|
359 |
metrics:
|
360 |
- type: total_reward
|
361 |
+
value: 616.20 +/- 296.08
|
362 |
name: Total reward
|
363 |
- type: expert_normalized_total_reward
|
364 |
value: 0.01 +/- 0.01
|
365 |
name: Expert normalized total reward
|
366 |
- type: human_normalized_total_reward
|
367 |
+
value: 0.20 +/- 0.12
|
368 |
name: Human normalized total reward
|
369 |
- task:
|
370 |
type: reinforcement-learning
|
|
|
374 |
type: atari-bowling
|
375 |
metrics:
|
376 |
- type: total_reward
|
377 |
+
value: 22.32 +/- 5.18
|
378 |
name: Total reward
|
379 |
- type: expert_normalized_total_reward
|
380 |
value: 1.00 +/- 0.00
|
|
|
390 |
type: atari-boxing
|
391 |
metrics:
|
392 |
- type: total_reward
|
393 |
+
value: 92.31 +/- 18.24
|
394 |
name: Total reward
|
395 |
- type: expert_normalized_total_reward
|
396 |
+
value: 0.94 +/- 0.19
|
397 |
name: Expert normalized total reward
|
398 |
- type: human_normalized_total_reward
|
399 |
+
value: 7.68 +/- 1.52
|
400 |
name: Human normalized total reward
|
401 |
- task:
|
402 |
type: reinforcement-learning
|
|
|
406 |
type: atari-breakout
|
407 |
metrics:
|
408 |
- type: total_reward
|
409 |
+
value: 7.93 +/- 5.66
|
410 |
name: Total reward
|
411 |
- type: expert_normalized_total_reward
|
412 |
value: 0.01 +/- 0.01
|
413 |
name: Expert normalized total reward
|
414 |
- type: human_normalized_total_reward
|
415 |
+
value: 0.22 +/- 0.20
|
416 |
name: Human normalized total reward
|
417 |
- task:
|
418 |
type: reinforcement-learning
|
|
|
422 |
type: atari-centipede
|
423 |
metrics:
|
424 |
- type: total_reward
|
425 |
+
value: 5888.27 +/- 2594.62
|
426 |
name: Total reward
|
427 |
- type: expert_normalized_total_reward
|
428 |
+
value: 0.40 +/- 0.27
|
429 |
name: Expert normalized total reward
|
430 |
- type: human_normalized_total_reward
|
431 |
+
value: 0.38 +/- 0.26
|
432 |
name: Human normalized total reward
|
433 |
- task:
|
434 |
type: reinforcement-learning
|
|
|
438 |
type: atari-choppercommand
|
439 |
metrics:
|
440 |
- type: total_reward
|
441 |
+
value: 2371.00 +/- 1195.43
|
442 |
name: Total reward
|
443 |
- type: expert_normalized_total_reward
|
444 |
+
value: 0.02 +/- 0.01
|
445 |
name: Expert normalized total reward
|
446 |
- type: human_normalized_total_reward
|
447 |
+
value: 0.24 +/- 0.18
|
448 |
name: Human normalized total reward
|
449 |
- task:
|
450 |
type: reinforcement-learning
|
|
|
454 |
type: atari-crazyclimber
|
455 |
metrics:
|
456 |
- type: total_reward
|
457 |
+
value: 97145.00 +/- 30388.04
|
458 |
name: Total reward
|
459 |
- type: expert_normalized_total_reward
|
460 |
+
value: 0.51 +/- 0.18
|
461 |
name: Expert normalized total reward
|
462 |
- type: human_normalized_total_reward
|
463 |
+
value: 3.45 +/- 1.21
|
464 |
name: Human normalized total reward
|
465 |
- task:
|
466 |
type: reinforcement-learning
|
|
|
470 |
type: atari-defender
|
471 |
metrics:
|
472 |
- type: total_reward
|
473 |
+
value: 39317.50 +/- 16246.15
|
474 |
name: Total reward
|
475 |
- type: expert_normalized_total_reward
|
476 |
+
value: 0.10 +/- 0.05
|
477 |
name: Expert normalized total reward
|
478 |
- type: human_normalized_total_reward
|
479 |
+
value: 2.30 +/- 1.03
|
480 |
name: Human normalized total reward
|
481 |
- task:
|
482 |
type: reinforcement-learning
|
|
|
486 |
type: atari-demonattack
|
487 |
metrics:
|
488 |
- type: total_reward
|
489 |
+
value: 795.10 +/- 982.55
|
490 |
name: Total reward
|
491 |
- type: expert_normalized_total_reward
|
492 |
value: 0.01 +/- 0.01
|
493 |
name: Expert normalized total reward
|
494 |
- type: human_normalized_total_reward
|
495 |
+
value: 0.35 +/- 0.54
|
496 |
name: Human normalized total reward
|
497 |
- task:
|
498 |
type: reinforcement-learning
|
|
|
502 |
type: atari-doubledunk
|
503 |
metrics:
|
504 |
- type: total_reward
|
505 |
+
value: 13.40 +/- 11.07
|
506 |
name: Total reward
|
507 |
- type: expert_normalized_total_reward
|
508 |
+
value: 0.81 +/- 0.28
|
509 |
name: Expert normalized total reward
|
510 |
- type: human_normalized_total_reward
|
511 |
+
value: 0.91 +/- 0.32
|
512 |
name: Human normalized total reward
|
513 |
- task:
|
514 |
type: reinforcement-learning
|
|
|
518 |
type: atari-enduro
|
519 |
metrics:
|
520 |
- type: total_reward
|
521 |
+
value: 103.11 +/- 28.05
|
522 |
name: Total reward
|
523 |
- type: expert_normalized_total_reward
|
524 |
+
value: 0.04 +/- 0.01
|
525 |
name: Expert normalized total reward
|
526 |
- type: human_normalized_total_reward
|
527 |
+
value: 0.12 +/- 0.03
|
528 |
name: Human normalized total reward
|
529 |
- task:
|
530 |
type: reinforcement-learning
|
|
|
534 |
type: atari-fishingderby
|
535 |
metrics:
|
536 |
- type: total_reward
|
537 |
+
value: -31.67 +/- 22.54
|
538 |
name: Total reward
|
539 |
- type: expert_normalized_total_reward
|
540 |
+
value: 0.61 +/- 0.23
|
541 |
name: Expert normalized total reward
|
542 |
- type: human_normalized_total_reward
|
543 |
+
value: 0.46 +/- 0.17
|
544 |
name: Human normalized total reward
|
545 |
- task:
|
546 |
type: reinforcement-learning
|
|
|
550 |
type: atari-freeway
|
551 |
metrics:
|
552 |
- type: total_reward
|
553 |
+
value: 27.57 +/- 1.87
|
554 |
name: Total reward
|
555 |
- type: expert_normalized_total_reward
|
556 |
+
value: 0.81 +/- 0.06
|
557 |
name: Expert normalized total reward
|
558 |
- type: human_normalized_total_reward
|
559 |
value: 0.93 +/- 0.06
|
|
|
566 |
type: atari-frostbite
|
567 |
metrics:
|
568 |
- type: total_reward
|
569 |
+
value: 2875.60 +/- 1679.84
|
570 |
name: Total reward
|
571 |
- type: expert_normalized_total_reward
|
572 |
+
value: 0.21 +/- 0.13
|
573 |
name: Expert normalized total reward
|
574 |
- type: human_normalized_total_reward
|
575 |
+
value: 0.66 +/- 0.39
|
576 |
name: Human normalized total reward
|
577 |
- task:
|
578 |
type: reinforcement-learning
|
|
|
582 |
type: atari-gopher
|
583 |
metrics:
|
584 |
- type: total_reward
|
585 |
+
value: 5508.80 +/- 2802.03
|
586 |
name: Total reward
|
587 |
- type: expert_normalized_total_reward
|
588 |
value: 0.06 +/- 0.03
|
589 |
name: Expert normalized total reward
|
590 |
- type: human_normalized_total_reward
|
591 |
+
value: 2.44 +/- 1.30
|
592 |
name: Human normalized total reward
|
593 |
- task:
|
594 |
type: reinforcement-learning
|
|
|
598 |
type: atari-gravitar
|
599 |
metrics:
|
600 |
- type: total_reward
|
601 |
+
value: 1330.50 +/- 918.23
|
602 |
name: Total reward
|
603 |
- type: expert_normalized_total_reward
|
604 |
+
value: 0.30 +/- 0.24
|
605 |
name: Expert normalized total reward
|
606 |
- type: human_normalized_total_reward
|
607 |
+
value: 0.36 +/- 0.29
|
608 |
name: Human normalized total reward
|
609 |
- task:
|
610 |
type: reinforcement-learning
|
|
|
614 |
type: atari-hero
|
615 |
metrics:
|
616 |
- type: total_reward
|
617 |
+
value: 11932.00 +/- 3036.87
|
618 |
name: Total reward
|
619 |
- type: expert_normalized_total_reward
|
620 |
+
value: 0.25 +/- 0.07
|
621 |
name: Expert normalized total reward
|
622 |
- type: human_normalized_total_reward
|
623 |
+
value: 0.37 +/- 0.10
|
624 |
name: Human normalized total reward
|
625 |
- task:
|
626 |
type: reinforcement-learning
|
|
|
630 |
type: atari-icehockey
|
631 |
metrics:
|
632 |
- type: total_reward
|
633 |
+
value: 7.61 +/- 5.28
|
634 |
name: Total reward
|
635 |
- type: expert_normalized_total_reward
|
636 |
+
value: 0.52 +/- 0.15
|
637 |
name: Expert normalized total reward
|
638 |
- type: human_normalized_total_reward
|
639 |
+
value: 1.55 +/- 0.44
|
640 |
name: Human normalized total reward
|
641 |
- task:
|
642 |
type: reinforcement-learning
|
|
|
646 |
type: atari-jamesbond
|
647 |
metrics:
|
648 |
- type: total_reward
|
649 |
+
value: 425.00 +/- 632.51
|
650 |
name: Total reward
|
651 |
- type: expert_normalized_total_reward
|
652 |
+
value: 0.01 +/- 0.02
|
653 |
name: Expert normalized total reward
|
654 |
- type: human_normalized_total_reward
|
655 |
+
value: 1.45 +/- 2.31
|
656 |
name: Human normalized total reward
|
657 |
- task:
|
658 |
type: reinforcement-learning
|
|
|
662 |
type: atari-kangaroo
|
663 |
metrics:
|
664 |
- type: total_reward
|
665 |
+
value: 375.00 +/- 314.13
|
666 |
name: Total reward
|
667 |
- type: expert_normalized_total_reward
|
668 |
+
value: 0.62 +/- 0.60
|
669 |
name: Expert normalized total reward
|
670 |
- type: human_normalized_total_reward
|
671 |
+
value: 0.11 +/- 0.11
|
672 |
name: Human normalized total reward
|
673 |
- task:
|
674 |
type: reinforcement-learning
|
|
|
678 |
type: atari-krull
|
679 |
metrics:
|
680 |
- type: total_reward
|
681 |
+
value: 10743.30 +/- 1311.26
|
682 |
name: Total reward
|
683 |
- type: expert_normalized_total_reward
|
684 |
value: 0.93 +/- 0.13
|
685 |
name: Expert normalized total reward
|
686 |
- type: human_normalized_total_reward
|
687 |
+
value: 8.57 +/- 1.23
|
688 |
name: Human normalized total reward
|
689 |
- task:
|
690 |
type: reinforcement-learning
|
|
|
694 |
type: atari-kungfumaster
|
695 |
metrics:
|
696 |
- type: total_reward
|
697 |
+
value: 253.00 +/- 233.86
|
698 |
name: Total reward
|
699 |
- type: expert_normalized_total_reward
|
700 |
+
value: -0.00 +/- 0.01
|
701 |
name: Expert normalized total reward
|
702 |
- type: human_normalized_total_reward
|
703 |
+
value: -0.00 +/- 0.01
|
704 |
name: Human normalized total reward
|
705 |
- task:
|
706 |
type: reinforcement-learning
|
|
|
726 |
type: atari-mspacman
|
727 |
metrics:
|
728 |
- type: total_reward
|
729 |
+
value: 1610.10 +/- 504.08
|
730 |
name: Total reward
|
731 |
- type: expert_normalized_total_reward
|
732 |
+
value: 0.20 +/- 0.08
|
733 |
name: Expert normalized total reward
|
734 |
- type: human_normalized_total_reward
|
735 |
+
value: 0.20 +/- 0.08
|
736 |
name: Human normalized total reward
|
737 |
- task:
|
738 |
type: reinforcement-learning
|
|
|
742 |
type: atari-namethisgame
|
743 |
metrics:
|
744 |
- type: total_reward
|
745 |
+
value: 7726.40 +/- 2166.18
|
746 |
name: Total reward
|
747 |
- type: expert_normalized_total_reward
|
748 |
+
value: 0.26 +/- 0.10
|
749 |
name: Expert normalized total reward
|
750 |
- type: human_normalized_total_reward
|
751 |
+
value: 0.94 +/- 0.38
|
752 |
name: Human normalized total reward
|
753 |
- task:
|
754 |
type: reinforcement-learning
|
|
|
758 |
type: atari-phoenix
|
759 |
metrics:
|
760 |
- type: total_reward
|
761 |
+
value: 1814.20 +/- 1275.29
|
762 |
name: Total reward
|
763 |
- type: expert_normalized_total_reward
|
764 |
value: 0.00 +/- 0.00
|
765 |
name: Expert normalized total reward
|
766 |
- type: human_normalized_total_reward
|
767 |
+
value: 0.16 +/- 0.20
|
768 |
name: Human normalized total reward
|
769 |
- task:
|
770 |
type: reinforcement-learning
|
|
|
774 |
type: atari-pitfall
|
775 |
metrics:
|
776 |
- type: total_reward
|
777 |
+
value: -4.61 +/- 15.86
|
778 |
name: Total reward
|
779 |
- type: expert_normalized_total_reward
|
780 |
+
value: 0.99 +/- 0.07
|
781 |
name: Expert normalized total reward
|
782 |
- type: human_normalized_total_reward
|
783 |
value: 0.03 +/- 0.00
|
|
|
790 |
type: atari-pong
|
791 |
metrics:
|
792 |
- type: total_reward
|
793 |
+
value: 16.54 +/- 10.34
|
794 |
name: Total reward
|
795 |
- type: expert_normalized_total_reward
|
796 |
+
value: 0.89 +/- 0.25
|
797 |
name: Expert normalized total reward
|
798 |
- type: human_normalized_total_reward
|
799 |
+
value: 1.05 +/- 0.29
|
800 |
name: Human normalized total reward
|
801 |
- task:
|
802 |
type: reinforcement-learning
|
|
|
822 |
type: atari-qbert
|
823 |
metrics:
|
824 |
- type: total_reward
|
825 |
+
value: 2118.50 +/- 2764.25
|
826 |
name: Total reward
|
827 |
- type: expert_normalized_total_reward
|
828 |
+
value: 0.05 +/- 0.06
|
829 |
name: Expert normalized total reward
|
830 |
- type: human_normalized_total_reward
|
831 |
+
value: 0.15 +/- 0.21
|
832 |
name: Human normalized total reward
|
833 |
- task:
|
834 |
type: reinforcement-learning
|
|
|
838 |
type: atari-riverraid
|
839 |
metrics:
|
840 |
- type: total_reward
|
841 |
+
value: 3925.20 +/- 1530.94
|
842 |
name: Total reward
|
843 |
- type: expert_normalized_total_reward
|
844 |
+
value: 0.19 +/- 0.11
|
845 |
name: Expert normalized total reward
|
846 |
- type: human_normalized_total_reward
|
847 |
+
value: 0.16 +/- 0.10
|
848 |
name: Human normalized total reward
|
849 |
- task:
|
850 |
type: reinforcement-learning
|
|
|
854 |
type: atari-roadrunner
|
855 |
metrics:
|
856 |
- type: total_reward
|
857 |
+
value: 6929.00 +/- 5577.35
|
858 |
name: Total reward
|
859 |
- type: expert_normalized_total_reward
|
860 |
+
value: 0.09 +/- 0.07
|
861 |
name: Expert normalized total reward
|
862 |
- type: human_normalized_total_reward
|
863 |
+
value: 0.88 +/- 0.71
|
864 |
name: Human normalized total reward
|
865 |
- task:
|
866 |
type: reinforcement-learning
|
|
|
870 |
type: atari-robotank
|
871 |
metrics:
|
872 |
- type: total_reward
|
873 |
+
value: 10.22 +/- 4.71
|
874 |
name: Total reward
|
875 |
- type: expert_normalized_total_reward
|
876 |
+
value: 0.10 +/- 0.06
|
877 |
name: Expert normalized total reward
|
878 |
- type: human_normalized_total_reward
|
879 |
+
value: 0.83 +/- 0.49
|
880 |
name: Human normalized total reward
|
881 |
- task:
|
882 |
type: reinforcement-learning
|
|
|
886 |
type: atari-seaquest
|
887 |
metrics:
|
888 |
- type: total_reward
|
889 |
+
value: 859.80 +/- 407.80
|
890 |
name: Total reward
|
891 |
- type: expert_normalized_total_reward
|
892 |
+
value: 0.31 +/- 0.16
|
893 |
name: Expert normalized total reward
|
894 |
- type: human_normalized_total_reward
|
895 |
value: 0.02 +/- 0.01
|
|
|
902 |
type: atari-skiing
|
903 |
metrics:
|
904 |
- type: total_reward
|
905 |
+
value: -15960.04 +/- 5887.52
|
906 |
name: Total reward
|
907 |
- type: expert_normalized_total_reward
|
908 |
+
value: 0.18 +/- 0.93
|
909 |
name: Expert normalized total reward
|
910 |
- type: human_normalized_total_reward
|
911 |
+
value: 0.09 +/- 0.46
|
912 |
name: Human normalized total reward
|
913 |
- task:
|
914 |
type: reinforcement-learning
|
|
|
918 |
type: atari-solaris
|
919 |
metrics:
|
920 |
- type: total_reward
|
921 |
+
value: 1202.60 +/- 445.27
|
922 |
name: Total reward
|
923 |
- type: expert_normalized_total_reward
|
924 |
+
value: -0.29 +/- 3.79
|
925 |
name: Expert normalized total reward
|
926 |
- type: human_normalized_total_reward
|
927 |
+
value: -0.00 +/- 0.04
|
928 |
name: Human normalized total reward
|
929 |
- task:
|
930 |
type: reinforcement-learning
|
|
|
934 |
type: atari-spaceinvaders
|
935 |
metrics:
|
936 |
- type: total_reward
|
937 |
+
value: 326.85 +/- 141.89
|
938 |
name: Total reward
|
939 |
- type: expert_normalized_total_reward
|
940 |
+
value: 0.01 +/- 0.00
|
941 |
name: Expert normalized total reward
|
942 |
- type: human_normalized_total_reward
|
943 |
+
value: 0.12 +/- 0.09
|
944 |
name: Human normalized total reward
|
945 |
- task:
|
946 |
type: reinforcement-learning
|
|
|
950 |
type: atari-stargunner
|
951 |
metrics:
|
952 |
- type: total_reward
|
953 |
+
value: 5219.00 +/- 3544.03
|
954 |
name: Total reward
|
955 |
- type: expert_normalized_total_reward
|
956 |
value: 0.01 +/- 0.01
|
957 |
name: Expert normalized total reward
|
958 |
- type: human_normalized_total_reward
|
959 |
+
value: 0.48 +/- 0.37
|
960 |
name: Human normalized total reward
|
961 |
- task:
|
962 |
type: reinforcement-learning
|
|
|
966 |
type: atari-surround
|
967 |
metrics:
|
968 |
- type: total_reward
|
969 |
+
value: 1.52 +/- 4.60
|
970 |
name: Total reward
|
971 |
- type: expert_normalized_total_reward
|
972 |
+
value: 0.59 +/- 0.24
|
973 |
name: Expert normalized total reward
|
974 |
- type: human_normalized_total_reward
|
975 |
+
value: 0.70 +/- 0.28
|
976 |
name: Human normalized total reward
|
977 |
- task:
|
978 |
type: reinforcement-learning
|
|
|
982 |
type: atari-tennis
|
983 |
metrics:
|
984 |
- type: total_reward
|
985 |
+
value: -12.80 +/- 3.70
|
986 |
name: Total reward
|
987 |
- type: expert_normalized_total_reward
|
988 |
+
value: 0.32 +/- 0.11
|
989 |
name: Expert normalized total reward
|
990 |
- type: human_normalized_total_reward
|
991 |
+
value: 0.34 +/- 0.12
|
992 |
name: Human normalized total reward
|
993 |
- task:
|
994 |
type: reinforcement-learning
|
|
|
998 |
type: atari-timepilot
|
999 |
metrics:
|
1000 |
- type: total_reward
|
1001 |
+
value: 11603.00 +/- 4323.25
|
1002 |
name: Total reward
|
1003 |
- type: expert_normalized_total_reward
|
1004 |
+
value: 0.12 +/- 0.07
|
1005 |
name: Expert normalized total reward
|
1006 |
- type: human_normalized_total_reward
|
1007 |
+
value: 4.84 +/- 2.60
|
1008 |
name: Human normalized total reward
|
1009 |
- task:
|
1010 |
type: reinforcement-learning
|
|
|
1014 |
type: atari-tutankham
|
1015 |
metrics:
|
1016 |
- type: total_reward
|
1017 |
+
value: 108.82 +/- 70.14
|
1018 |
name: Total reward
|
1019 |
- type: expert_normalized_total_reward
|
1020 |
+
value: 0.35 +/- 0.25
|
1021 |
name: Expert normalized total reward
|
1022 |
- type: human_normalized_total_reward
|
1023 |
+
value: 0.62 +/- 0.45
|
1024 |
name: Human normalized total reward
|
1025 |
- task:
|
1026 |
type: reinforcement-learning
|
|
|
1030 |
type: atari-upndown
|
1031 |
metrics:
|
1032 |
- type: total_reward
|
1033 |
+
value: 19074.60 +/- 9961.77
|
1034 |
name: Total reward
|
1035 |
- type: expert_normalized_total_reward
|
1036 |
value: 0.04 +/- 0.02
|
1037 |
name: Expert normalized total reward
|
1038 |
- type: human_normalized_total_reward
|
1039 |
+
value: 1.66 +/- 0.89
|
1040 |
name: Human normalized total reward
|
1041 |
- task:
|
1042 |
type: reinforcement-learning
|
|
|
1062 |
type: atari-videopinball
|
1063 |
metrics:
|
1064 |
- type: total_reward
|
1065 |
+
value: 12466.69 +/- 8723.07
|
1066 |
name: Total reward
|
1067 |
- type: expert_normalized_total_reward
|
1068 |
value: 0.03 +/- 0.02
|
1069 |
name: Expert normalized total reward
|
1070 |
- type: human_normalized_total_reward
|
1071 |
+
value: 0.71 +/- 0.49
|
1072 |
name: Human normalized total reward
|
1073 |
- task:
|
1074 |
type: reinforcement-learning
|
|
|
1078 |
type: atari-wizardofwor
|
1079 |
metrics:
|
1080 |
- type: total_reward
|
1081 |
+
value: 2231.00 +/- 2042.92
|
1082 |
name: Total reward
|
1083 |
- type: expert_normalized_total_reward
|
1084 |
+
value: 0.03 +/- 0.04
|
1085 |
name: Expert normalized total reward
|
1086 |
- type: human_normalized_total_reward
|
1087 |
+
value: 0.40 +/- 0.49
|
1088 |
name: Human normalized total reward
|
1089 |
- task:
|
1090 |
type: reinforcement-learning
|
|
|
1094 |
type: atari-yarsrevenge
|
1095 |
metrics:
|
1096 |
- type: total_reward
|
1097 |
+
value: 11190.85 +/- 7342.58
|
1098 |
name: Total reward
|
1099 |
- type: expert_normalized_total_reward
|
1100 |
+
value: 0.03 +/- 0.03
|
1101 |
name: Expert normalized total reward
|
1102 |
- type: human_normalized_total_reward
|
1103 |
+
value: 0.16 +/- 0.14
|
1104 |
name: Human normalized total reward
|
1105 |
- task:
|
1106 |
type: reinforcement-learning
|
|
|
1110 |
type: atari-zaxxon
|
1111 |
metrics:
|
1112 |
- type: total_reward
|
1113 |
+
value: 5976.00 +/- 2889.54
|
1114 |
name: Total reward
|
1115 |
- type: expert_normalized_total_reward
|
1116 |
+
value: 0.08 +/- 0.04
|
1117 |
name: Expert normalized total reward
|
1118 |
- type: human_normalized_total_reward
|
1119 |
+
value: 0.65 +/- 0.32
|
1120 |
name: Human normalized total reward
|
1121 |
- task:
|
1122 |
type: reinforcement-learning
|
|
|
1126 |
type: babyai-action-obj-door
|
1127 |
metrics:
|
1128 |
- type: total_reward
|
1129 |
+
value: 0.92 +/- 0.22
|
1130 |
name: Total reward
|
1131 |
- type: expert_normalized_total_reward
|
1132 |
+
value: 0.88 +/- 0.36
|
1133 |
name: Expert normalized total reward
|
1134 |
- task:
|
1135 |
type: reinforcement-learning
|
|
|
1152 |
type: babyai-boss-level-no-unlock
|
1153 |
metrics:
|
1154 |
- type: total_reward
|
1155 |
+
value: 0.49 +/- 0.43
|
1156 |
name: Total reward
|
1157 |
- type: expert_normalized_total_reward
|
1158 |
+
value: 0.49 +/- 0.49
|
1159 |
name: Expert normalized total reward
|
1160 |
- task:
|
1161 |
type: reinforcement-learning
|
|
|
1165 |
type: babyai-boss-level
|
1166 |
metrics:
|
1167 |
- type: total_reward
|
1168 |
+
value: 0.54 +/- 0.43
|
1169 |
name: Total reward
|
1170 |
- type: expert_normalized_total_reward
|
1171 |
+
value: 0.54 +/- 0.49
|
1172 |
name: Expert normalized total reward
|
1173 |
- task:
|
1174 |
type: reinforcement-learning
|
|
|
1178 |
type: babyai-find-obj-s5
|
1179 |
metrics:
|
1180 |
- type: total_reward
|
1181 |
+
value: 0.94 +/- 0.04
|
1182 |
name: Total reward
|
1183 |
- type: expert_normalized_total_reward
|
1184 |
value: 1.00 +/- 0.04
|
|
|
1191 |
type: babyai-go-to-door
|
1192 |
metrics:
|
1193 |
- type: total_reward
|
1194 |
+
value: 0.99 +/- 0.02
|
1195 |
name: Total reward
|
1196 |
- type: expert_normalized_total_reward
|
1197 |
+
value: 1.00 +/- 0.03
|
1198 |
name: Expert normalized total reward
|
1199 |
- task:
|
1200 |
type: reinforcement-learning
|
|
|
1204 |
type: babyai-go-to-imp-unlock
|
1205 |
metrics:
|
1206 |
- type: total_reward
|
1207 |
+
value: 0.53 +/- 0.41
|
1208 |
name: Total reward
|
1209 |
- type: expert_normalized_total_reward
|
1210 |
+
value: 0.60 +/- 0.55
|
1211 |
name: Expert normalized total reward
|
1212 |
- task:
|
1213 |
type: reinforcement-learning
|
|
|
1217 |
type: babyai-go-to-local
|
1218 |
metrics:
|
1219 |
- type: total_reward
|
1220 |
+
value: 0.87 +/- 0.16
|
1221 |
name: Total reward
|
1222 |
- type: expert_normalized_total_reward
|
1223 |
+
value: 0.93 +/- 0.22
|
1224 |
name: Expert normalized total reward
|
1225 |
- task:
|
1226 |
type: reinforcement-learning
|
|
|
1233 |
value: 0.98 +/- 0.04
|
1234 |
name: Total reward
|
1235 |
- type: expert_normalized_total_reward
|
1236 |
+
value: 0.98 +/- 0.08
|
1237 |
name: Expert normalized total reward
|
1238 |
- task:
|
1239 |
type: reinforcement-learning
|
|
|
1243 |
type: babyai-go-to-obj
|
1244 |
metrics:
|
1245 |
- type: total_reward
|
1246 |
+
value: 0.94 +/- 0.03
|
1247 |
name: Total reward
|
1248 |
- type: expert_normalized_total_reward
|
1249 |
+
value: 1.01 +/- 0.03
|
1250 |
name: Expert normalized total reward
|
1251 |
- task:
|
1252 |
type: reinforcement-learning
|
|
|
1256 |
type: babyai-go-to-red-ball-grey
|
1257 |
metrics:
|
1258 |
- type: total_reward
|
1259 |
+
value: 0.92 +/- 0.05
|
1260 |
name: Total reward
|
1261 |
- type: expert_normalized_total_reward
|
1262 |
+
value: 1.00 +/- 0.06
|
1263 |
name: Expert normalized total reward
|
1264 |
- task:
|
1265 |
type: reinforcement-learning
|
|
|
1272 |
value: 0.93 +/- 0.03
|
1273 |
name: Total reward
|
1274 |
- type: expert_normalized_total_reward
|
1275 |
+
value: 1.00 +/- 0.03
|
1276 |
name: Expert normalized total reward
|
1277 |
- task:
|
1278 |
type: reinforcement-learning
|
|
|
1282 |
type: babyai-go-to-red-ball
|
1283 |
metrics:
|
1284 |
- type: total_reward
|
1285 |
+
value: 0.91 +/- 0.09
|
1286 |
name: Total reward
|
1287 |
- type: expert_normalized_total_reward
|
1288 |
+
value: 0.98 +/- 0.12
|
1289 |
name: Expert normalized total reward
|
1290 |
- task:
|
1291 |
type: reinforcement-learning
|
|
|
1295 |
type: babyai-go-to-red-blue-ball
|
1296 |
metrics:
|
1297 |
- type: total_reward
|
1298 |
+
value: 0.91 +/- 0.08
|
1299 |
name: Total reward
|
1300 |
- type: expert_normalized_total_reward
|
1301 |
+
value: 0.99 +/- 0.10
|
1302 |
name: Expert normalized total reward
|
1303 |
- task:
|
1304 |
type: reinforcement-learning
|
|
|
1308 |
type: babyai-go-to-seq
|
1309 |
metrics:
|
1310 |
- type: total_reward
|
1311 |
+
value: 0.73 +/- 0.33
|
1312 |
name: Total reward
|
1313 |
- type: expert_normalized_total_reward
|
1314 |
+
value: 0.76 +/- 0.38
|
1315 |
name: Expert normalized total reward
|
1316 |
- task:
|
1317 |
type: reinforcement-learning
|
|
|
1321 |
type: babyai-go-to
|
1322 |
metrics:
|
1323 |
- type: total_reward
|
1324 |
+
value: 0.78 +/- 0.28
|
1325 |
name: Total reward
|
1326 |
- type: expert_normalized_total_reward
|
1327 |
+
value: 0.82 +/- 0.35
|
1328 |
name: Expert normalized total reward
|
1329 |
- task:
|
1330 |
type: reinforcement-learning
|
|
|
1334 |
type: babyai-key-corridor
|
1335 |
metrics:
|
1336 |
- type: total_reward
|
1337 |
+
value: 0.87 +/- 0.13
|
1338 |
name: Total reward
|
1339 |
- type: expert_normalized_total_reward
|
1340 |
+
value: 0.96 +/- 0.14
|
1341 |
name: Expert normalized total reward
|
1342 |
- task:
|
1343 |
type: reinforcement-learning
|
|
|
1347 |
type: babyai-mini-boss-level
|
1348 |
metrics:
|
1349 |
- type: total_reward
|
1350 |
+
value: 0.53 +/- 0.41
|
1351 |
name: Total reward
|
1352 |
- type: expert_normalized_total_reward
|
1353 |
+
value: 0.56 +/- 0.50
|
1354 |
name: Expert normalized total reward
|
1355 |
- task:
|
1356 |
type: reinforcement-learning
|
|
|
1360 |
type: babyai-move-two-across-s8n9
|
1361 |
metrics:
|
1362 |
- type: total_reward
|
1363 |
+
value: 0.05 +/- 0.19
|
1364 |
name: Total reward
|
1365 |
- type: expert_normalized_total_reward
|
1366 |
+
value: 0.05 +/- 0.20
|
1367 |
name: Expert normalized total reward
|
1368 |
- task:
|
1369 |
type: reinforcement-learning
|
|
|
1373 |
type: babyai-one-room-s8
|
1374 |
metrics:
|
1375 |
- type: total_reward
|
1376 |
+
value: 0.92 +/- 0.04
|
1377 |
name: Total reward
|
1378 |
- type: expert_normalized_total_reward
|
1379 |
value: 1.00 +/- 0.04
|
|
|
1399 |
type: babyai-open-doors-order-n4
|
1400 |
metrics:
|
1401 |
- type: total_reward
|
1402 |
+
value: 0.96 +/- 0.14
|
1403 |
name: Total reward
|
1404 |
- type: expert_normalized_total_reward
|
1405 |
+
value: 0.96 +/- 0.17
|
1406 |
name: Expert normalized total reward
|
1407 |
- task:
|
1408 |
type: reinforcement-learning
|
|
|
1412 |
type: babyai-open-red-door
|
1413 |
metrics:
|
1414 |
- type: total_reward
|
1415 |
+
value: 0.92 +/- 0.03
|
1416 |
name: Total reward
|
1417 |
- type: expert_normalized_total_reward
|
1418 |
value: 1.00 +/- 0.03
|
|
|
1438 |
type: babyai-open
|
1439 |
metrics:
|
1440 |
- type: total_reward
|
1441 |
+
value: 0.95 +/- 0.08
|
1442 |
name: Total reward
|
1443 |
- type: expert_normalized_total_reward
|
1444 |
+
value: 0.99 +/- 0.10
|
1445 |
name: Expert normalized total reward
|
1446 |
- task:
|
1447 |
type: reinforcement-learning
|
|
|
1464 |
type: babyai-pickup-dist
|
1465 |
metrics:
|
1466 |
- type: total_reward
|
1467 |
+
value: 0.87 +/- 0.12
|
1468 |
name: Total reward
|
1469 |
- type: expert_normalized_total_reward
|
1470 |
+
value: 1.02 +/- 0.16
|
1471 |
name: Expert normalized total reward
|
1472 |
- task:
|
1473 |
type: reinforcement-learning
|
|
|
1477 |
type: babyai-pickup-loc
|
1478 |
metrics:
|
1479 |
- type: total_reward
|
1480 |
+
value: 0.85 +/- 0.19
|
1481 |
name: Total reward
|
1482 |
- type: expert_normalized_total_reward
|
1483 |
+
value: 0.92 +/- 0.23
|
1484 |
name: Expert normalized total reward
|
1485 |
- task:
|
1486 |
type: reinforcement-learning
|
|
|
1490 |
type: babyai-pickup
|
1491 |
metrics:
|
1492 |
- type: total_reward
|
1493 |
+
value: 0.79 +/- 0.30
|
1494 |
name: Total reward
|
1495 |
- type: expert_normalized_total_reward
|
1496 |
+
value: 0.85 +/- 0.36
|
1497 |
name: Expert normalized total reward
|
1498 |
- task:
|
1499 |
type: reinforcement-learning
|
|
|
1503 |
type: babyai-put-next-local
|
1504 |
metrics:
|
1505 |
- type: total_reward
|
1506 |
+
value: 0.67 +/- 0.32
|
1507 |
name: Total reward
|
1508 |
- type: expert_normalized_total_reward
|
1509 |
+
value: 0.73 +/- 0.35
|
1510 |
name: Expert normalized total reward
|
1511 |
- task:
|
1512 |
type: reinforcement-learning
|
|
|
1516 |
type: babyai-put-next
|
1517 |
metrics:
|
1518 |
- type: total_reward
|
1519 |
+
value: 0.85 +/- 0.25
|
1520 |
name: Total reward
|
1521 |
- type: expert_normalized_total_reward
|
1522 |
+
value: 0.89 +/- 0.26
|
1523 |
name: Expert normalized total reward
|
1524 |
- task:
|
1525 |
type: reinforcement-learning
|
|
|
1529 |
type: babyai-synth-loc
|
1530 |
metrics:
|
1531 |
- type: total_reward
|
1532 |
+
value: 0.77 +/- 0.34
|
1533 |
name: Total reward
|
1534 |
- type: expert_normalized_total_reward
|
1535 |
+
value: 0.78 +/- 0.43
|
1536 |
name: Expert normalized total reward
|
1537 |
- task:
|
1538 |
type: reinforcement-learning
|
|
|
1542 |
type: babyai-synth-seq
|
1543 |
metrics:
|
1544 |
- type: total_reward
|
1545 |
+
value: 0.57 +/- 0.43
|
1546 |
name: Total reward
|
1547 |
- type: expert_normalized_total_reward
|
1548 |
+
value: 0.58 +/- 0.49
|
1549 |
name: Expert normalized total reward
|
1550 |
- task:
|
1551 |
type: reinforcement-learning
|
|
|
1555 |
type: babyai-synth
|
1556 |
metrics:
|
1557 |
- type: total_reward
|
1558 |
+
value: 0.75 +/- 0.35
|
1559 |
name: Total reward
|
1560 |
- type: expert_normalized_total_reward
|
1561 |
+
value: 0.78 +/- 0.43
|
1562 |
name: Expert normalized total reward
|
1563 |
- task:
|
1564 |
type: reinforcement-learning
|
|
|
1568 |
type: babyai-unblock-pickup
|
1569 |
metrics:
|
1570 |
- type: total_reward
|
1571 |
+
value: 0.79 +/- 0.29
|
1572 |
name: Total reward
|
1573 |
- type: expert_normalized_total_reward
|
1574 |
+
value: 0.86 +/- 0.35
|
1575 |
name: Expert normalized total reward
|
1576 |
- task:
|
1577 |
type: reinforcement-learning
|
|
|
1594 |
type: babyai-unlock-pickup
|
1595 |
metrics:
|
1596 |
- type: total_reward
|
1597 |
+
value: 0.75 +/- 0.03
|
1598 |
name: Total reward
|
1599 |
- type: expert_normalized_total_reward
|
1600 |
+
value: 1.00 +/- 0.05
|
1601 |
name: Expert normalized total reward
|
1602 |
- task:
|
1603 |
type: reinforcement-learning
|
|
|
1607 |
type: babyai-unlock-to-unlock
|
1608 |
metrics:
|
1609 |
- type: total_reward
|
1610 |
+
value: 0.85 +/- 0.31
|
1611 |
name: Total reward
|
1612 |
- type: expert_normalized_total_reward
|
1613 |
+
value: 0.88 +/- 0.32
|
1614 |
name: Expert normalized total reward
|
1615 |
- task:
|
1616 |
type: reinforcement-learning
|
|
|
1620 |
type: babyai-unlock
|
1621 |
metrics:
|
1622 |
- type: total_reward
|
1623 |
+
value: 0.43 +/- 0.43
|
1624 |
name: Total reward
|
1625 |
- type: expert_normalized_total_reward
|
1626 |
+
value: 0.48 +/- 0.52
|
1627 |
name: Expert normalized total reward
|
1628 |
- task:
|
1629 |
type: reinforcement-learning
|
|
|
1633 |
type: metaworld-assembly
|
1634 |
metrics:
|
1635 |
- type: total_reward
|
1636 |
+
value: 243.78 +/- 10.44
|
1637 |
name: Total reward
|
1638 |
- type: expert_normalized_total_reward
|
1639 |
+
value: 0.99 +/- 0.05
|
1640 |
name: Expert normalized total reward
|
1641 |
- task:
|
1642 |
type: reinforcement-learning
|
|
|
1646 |
type: metaworld-basketball
|
1647 |
metrics:
|
1648 |
- type: total_reward
|
1649 |
+
value: 1.71 +/- 0.63
|
1650 |
name: Total reward
|
1651 |
- type: expert_normalized_total_reward
|
1652 |
value: -0.00 +/- 0.00
|
|
|
1659 |
type: metaworld-bin-picking
|
1660 |
metrics:
|
1661 |
- type: total_reward
|
1662 |
+
value: 314.42 +/- 196.40
|
1663 |
name: Total reward
|
1664 |
- type: expert_normalized_total_reward
|
1665 |
+
value: 0.74 +/- 0.46
|
1666 |
name: Expert normalized total reward
|
1667 |
- task:
|
1668 |
type: reinforcement-learning
|
|
|
1672 |
type: metaworld-box-close
|
1673 |
metrics:
|
1674 |
- type: total_reward
|
1675 |
+
value: 482.86 +/- 146.37
|
1676 |
name: Total reward
|
1677 |
- type: expert_normalized_total_reward
|
1678 |
+
value: 0.93 +/- 0.34
|
1679 |
name: Expert normalized total reward
|
1680 |
- task:
|
1681 |
type: reinforcement-learning
|
|
|
1685 |
type: metaworld-button-press-topdown-wall
|
1686 |
metrics:
|
1687 |
- type: total_reward
|
1688 |
+
value: 268.30 +/- 82.78
|
1689 |
name: Total reward
|
1690 |
- type: expert_normalized_total_reward
|
1691 |
+
value: 0.51 +/- 0.18
|
1692 |
name: Expert normalized total reward
|
1693 |
- task:
|
1694 |
type: reinforcement-learning
|
|
|
1698 |
type: metaworld-button-press-topdown
|
1699 |
metrics:
|
1700 |
- type: total_reward
|
1701 |
+
value: 269.14 +/- 82.81
|
1702 |
name: Total reward
|
1703 |
- type: expert_normalized_total_reward
|
1704 |
+
value: 0.52 +/- 0.18
|
1705 |
name: Expert normalized total reward
|
1706 |
- task:
|
1707 |
type: reinforcement-learning
|
|
|
1711 |
type: metaworld-button-press-wall
|
1712 |
metrics:
|
1713 |
- type: total_reward
|
1714 |
+
value: 608.87 +/- 169.50
|
1715 |
name: Total reward
|
1716 |
- type: expert_normalized_total_reward
|
1717 |
+
value: 0.90 +/- 0.25
|
1718 |
name: Expert normalized total reward
|
1719 |
- task:
|
1720 |
type: reinforcement-learning
|
|
|
1724 |
type: metaworld-button-press
|
1725 |
metrics:
|
1726 |
- type: total_reward
|
1727 |
+
value: 624.03 +/- 73.53
|
1728 |
name: Total reward
|
1729 |
- type: expert_normalized_total_reward
|
1730 |
+
value: 0.97 +/- 0.12
|
1731 |
name: Expert normalized total reward
|
1732 |
- task:
|
1733 |
type: reinforcement-learning
|
|
|
1737 |
type: metaworld-coffee-button
|
1738 |
metrics:
|
1739 |
- type: total_reward
|
1740 |
+
value: 334.92 +/- 301.67
|
1741 |
name: Total reward
|
1742 |
- type: expert_normalized_total_reward
|
1743 |
+
value: 0.43 +/- 0.43
|
1744 |
name: Expert normalized total reward
|
1745 |
- task:
|
1746 |
type: reinforcement-learning
|
|
|
1750 |
type: metaworld-coffee-pull
|
1751 |
metrics:
|
1752 |
- type: total_reward
|
1753 |
+
value: 38.00 +/- 63.97
|
1754 |
name: Total reward
|
1755 |
- type: expert_normalized_total_reward
|
1756 |
+
value: 0.13 +/- 0.25
|
1757 |
name: Expert normalized total reward
|
1758 |
- task:
|
1759 |
type: reinforcement-learning
|
|
|
1763 |
type: metaworld-coffee-push
|
1764 |
metrics:
|
1765 |
- type: total_reward
|
1766 |
+
value: 151.38 +/- 207.69
|
1767 |
name: Total reward
|
1768 |
- type: expert_normalized_total_reward
|
1769 |
+
value: 0.30 +/- 0.42
|
1770 |
name: Expert normalized total reward
|
1771 |
- task:
|
1772 |
type: reinforcement-learning
|
|
|
1776 |
type: metaworld-dial-turn
|
1777 |
metrics:
|
1778 |
- type: total_reward
|
1779 |
+
value: 752.25 +/- 138.50
|
1780 |
name: Total reward
|
1781 |
- type: expert_normalized_total_reward
|
1782 |
+
value: 0.95 +/- 0.18
|
1783 |
name: Expert normalized total reward
|
1784 |
- task:
|
1785 |
type: reinforcement-learning
|
|
|
1789 |
type: metaworld-disassemble
|
1790 |
metrics:
|
1791 |
- type: total_reward
|
1792 |
+
value: 40.87 +/- 9.35
|
1793 |
name: Total reward
|
1794 |
- type: expert_normalized_total_reward
|
1795 |
+
value: 0.22 +/- 3.71
|
1796 |
name: Expert normalized total reward
|
1797 |
- task:
|
1798 |
type: reinforcement-learning
|
|
|
1802 |
type: metaworld-door-close
|
1803 |
metrics:
|
1804 |
- type: total_reward
|
1805 |
+
value: 530.48 +/- 29.02
|
1806 |
name: Total reward
|
1807 |
- type: expert_normalized_total_reward
|
1808 |
value: 1.00 +/- 0.06
|
|
|
1815 |
type: metaworld-door-lock
|
1816 |
metrics:
|
1817 |
- type: total_reward
|
1818 |
+
value: 678.98 +/- 194.57
|
1819 |
name: Total reward
|
1820 |
- type: expert_normalized_total_reward
|
1821 |
value: 0.81 +/- 0.28
|
|
|
1828 |
type: metaworld-door-open
|
1829 |
metrics:
|
1830 |
- type: total_reward
|
1831 |
+
value: 574.71 +/- 50.82
|
1832 |
name: Total reward
|
1833 |
- type: expert_normalized_total_reward
|
1834 |
+
value: 0.99 +/- 0.10
|
1835 |
name: Expert normalized total reward
|
1836 |
- task:
|
1837 |
type: reinforcement-learning
|
|
|
1841 |
type: metaworld-door-unlock
|
1842 |
metrics:
|
1843 |
- type: total_reward
|
1844 |
+
value: 761.82 +/- 114.70
|
1845 |
name: Total reward
|
1846 |
- type: expert_normalized_total_reward
|
1847 |
+
value: 0.94 +/- 0.16
|
1848 |
name: Expert normalized total reward
|
1849 |
- task:
|
1850 |
type: reinforcement-learning
|
|
|
1854 |
type: metaworld-drawer-close
|
1855 |
metrics:
|
1856 |
- type: total_reward
|
1857 |
+
value: 519.05 +/- 154.38
|
1858 |
name: Total reward
|
1859 |
- type: expert_normalized_total_reward
|
1860 |
+
value: 0.54 +/- 0.21
|
1861 |
name: Expert normalized total reward
|
1862 |
- task:
|
1863 |
type: reinforcement-learning
|
|
|
1867 |
type: metaworld-drawer-open
|
1868 |
metrics:
|
1869 |
- type: total_reward
|
1870 |
+
value: 486.02 +/- 34.17
|
1871 |
name: Total reward
|
1872 |
- type: expert_normalized_total_reward
|
1873 |
+
value: 0.98 +/- 0.09
|
1874 |
name: Expert normalized total reward
|
1875 |
- task:
|
1876 |
type: reinforcement-learning
|
|
|
1880 |
type: metaworld-faucet-close
|
1881 |
metrics:
|
1882 |
- type: total_reward
|
1883 |
+
value: 366.78 +/- 86.77
|
1884 |
name: Total reward
|
1885 |
- type: expert_normalized_total_reward
|
1886 |
+
value: 0.23 +/- 0.17
|
1887 |
name: Expert normalized total reward
|
1888 |
- task:
|
1889 |
type: reinforcement-learning
|
|
|
1893 |
type: metaworld-faucet-open
|
1894 |
metrics:
|
1895 |
- type: total_reward
|
1896 |
+
value: 685.01 +/- 65.52
|
1897 |
name: Total reward
|
1898 |
- type: expert_normalized_total_reward
|
1899 |
+
value: 0.96 +/- 0.14
|
1900 |
name: Expert normalized total reward
|
1901 |
- task:
|
1902 |
type: reinforcement-learning
|
|
|
1906 |
type: metaworld-hammer
|
1907 |
metrics:
|
1908 |
- type: total_reward
|
1909 |
+
value: 678.36 +/- 79.36
|
1910 |
name: Total reward
|
1911 |
- type: expert_normalized_total_reward
|
1912 |
+
value: 0.98 +/- 0.13
|
1913 |
name: Expert normalized total reward
|
1914 |
- task:
|
1915 |
type: reinforcement-learning
|
|
|
1919 |
type: metaworld-hand-insert
|
1920 |
metrics:
|
1921 |
- type: total_reward
|
1922 |
+
value: 695.27 +/- 134.25
|
1923 |
name: Total reward
|
1924 |
- type: expert_normalized_total_reward
|
1925 |
+
value: 0.94 +/- 0.18
|
1926 |
name: Expert normalized total reward
|
1927 |
- task:
|
1928 |
type: reinforcement-learning
|
|
|
1932 |
type: metaworld-handle-press-side
|
1933 |
metrics:
|
1934 |
- type: total_reward
|
1935 |
+
value: 65.07 +/- 69.65
|
1936 |
name: Total reward
|
1937 |
- type: expert_normalized_total_reward
|
1938 |
+
value: 0.01 +/- 0.09
|
1939 |
name: Expert normalized total reward
|
1940 |
- task:
|
1941 |
type: reinforcement-learning
|
|
|
1945 |
type: metaworld-handle-press
|
1946 |
metrics:
|
1947 |
- type: total_reward
|
1948 |
+
value: 695.97 +/- 311.48
|
1949 |
name: Total reward
|
1950 |
- type: expert_normalized_total_reward
|
1951 |
+
value: 0.79 +/- 0.40
|
1952 |
name: Expert normalized total reward
|
1953 |
- task:
|
1954 |
type: reinforcement-learning
|
|
|
1958 |
type: metaworld-handle-pull-side
|
1959 |
metrics:
|
1960 |
- type: total_reward
|
1961 |
+
value: 145.34 +/- 179.01
|
1962 |
name: Total reward
|
1963 |
- type: expert_normalized_total_reward
|
1964 |
+
value: 0.37 +/- 0.47
|
1965 |
name: Expert normalized total reward
|
1966 |
- task:
|
1967 |
type: reinforcement-learning
|
|
|
1971 |
type: metaworld-handle-pull
|
1972 |
metrics:
|
1973 |
- type: total_reward
|
1974 |
+
value: 514.56 +/- 205.75
|
1975 |
name: Total reward
|
1976 |
- type: expert_normalized_total_reward
|
1977 |
+
value: 0.77 +/- 0.31
|
1978 |
name: Expert normalized total reward
|
1979 |
- task:
|
1980 |
type: reinforcement-learning
|
|
|
1984 |
type: metaworld-lever-pull
|
1985 |
metrics:
|
1986 |
- type: total_reward
|
1987 |
+
value: 250.51 +/- 220.33
|
1988 |
name: Total reward
|
1989 |
- type: expert_normalized_total_reward
|
1990 |
+
value: 0.34 +/- 0.40
|
1991 |
name: Expert normalized total reward
|
1992 |
- task:
|
1993 |
type: reinforcement-learning
|
|
|
1997 |
type: metaworld-peg-insert-side
|
1998 |
metrics:
|
1999 |
- type: total_reward
|
2000 |
+
value: 305.94 +/- 166.53
|
2001 |
name: Total reward
|
2002 |
- type: expert_normalized_total_reward
|
2003 |
+
value: 0.97 +/- 0.53
|
2004 |
name: Expert normalized total reward
|
2005 |
- task:
|
2006 |
type: reinforcement-learning
|
|
|
2010 |
type: metaworld-peg-unplug-side
|
2011 |
metrics:
|
2012 |
- type: total_reward
|
2013 |
+
value: 120.73 +/- 169.26
|
2014 |
name: Total reward
|
2015 |
- type: expert_normalized_total_reward
|
2016 |
+
value: 0.26 +/- 0.37
|
2017 |
name: Expert normalized total reward
|
2018 |
- task:
|
2019 |
type: reinforcement-learning
|
|
|
2036 |
type: metaworld-pick-place-wall
|
2037 |
metrics:
|
2038 |
- type: total_reward
|
2039 |
+
value: 62.30 +/- 131.13
|
2040 |
name: Total reward
|
2041 |
- type: expert_normalized_total_reward
|
2042 |
+
value: 0.14 +/- 0.29
|
2043 |
name: Expert normalized total reward
|
2044 |
- task:
|
2045 |
type: reinforcement-learning
|
|
|
2049 |
type: metaworld-pick-place
|
2050 |
metrics:
|
2051 |
- type: total_reward
|
2052 |
+
value: 311.95 +/- 180.95
|
2053 |
name: Total reward
|
2054 |
- type: expert_normalized_total_reward
|
2055 |
+
value: 0.74 +/- 0.43
|
2056 |
name: Expert normalized total reward
|
2057 |
- task:
|
2058 |
type: reinforcement-learning
|
|
|
2062 |
type: metaworld-plate-slide-back-side
|
2063 |
metrics:
|
2064 |
- type: total_reward
|
2065 |
+
value: 689.54 +/- 157.90
|
2066 |
name: Total reward
|
2067 |
- type: expert_normalized_total_reward
|
2068 |
+
value: 0.94 +/- 0.23
|
2069 |
name: Expert normalized total reward
|
2070 |
- task:
|
2071 |
type: reinforcement-learning
|
|
|
2075 |
type: metaworld-plate-slide-back
|
2076 |
metrics:
|
2077 |
- type: total_reward
|
2078 |
+
value: 197.00 +/- 1.58
|
2079 |
name: Total reward
|
2080 |
- type: expert_normalized_total_reward
|
2081 |
value: 0.24 +/- 0.00
|
|
|
2088 |
type: metaworld-plate-slide-side
|
2089 |
metrics:
|
2090 |
- type: total_reward
|
2091 |
+
value: 122.56 +/- 24.56
|
2092 |
name: Total reward
|
2093 |
- type: expert_normalized_total_reward
|
2094 |
value: 0.16 +/- 0.04
|
|
|
2101 |
type: metaworld-plate-slide
|
2102 |
metrics:
|
2103 |
- type: total_reward
|
2104 |
+
value: 456.66 +/- 198.51
|
2105 |
name: Total reward
|
2106 |
- type: expert_normalized_total_reward
|
2107 |
+
value: 0.84 +/- 0.44
|
2108 |
name: Expert normalized total reward
|
2109 |
- task:
|
2110 |
type: reinforcement-learning
|
|
|
2114 |
type: metaworld-push-back
|
2115 |
metrics:
|
2116 |
- type: total_reward
|
2117 |
+
value: 71.38 +/- 100.60
|
2118 |
name: Total reward
|
2119 |
- type: expert_normalized_total_reward
|
2120 |
+
value: 0.84 +/- 1.20
|
2121 |
name: Expert normalized total reward
|
2122 |
- task:
|
2123 |
type: reinforcement-learning
|
|
|
2127 |
type: metaworld-push-wall
|
2128 |
metrics:
|
2129 |
- type: total_reward
|
2130 |
+
value: 216.66 +/- 256.33
|
2131 |
name: Total reward
|
2132 |
- type: expert_normalized_total_reward
|
2133 |
+
value: 0.28 +/- 0.35
|
2134 |
name: Expert normalized total reward
|
2135 |
- task:
|
2136 |
type: reinforcement-learning
|
|
|
2140 |
type: metaworld-push
|
2141 |
metrics:
|
2142 |
- type: total_reward
|
2143 |
+
value: 583.25 +/- 296.10
|
2144 |
name: Total reward
|
2145 |
- type: expert_normalized_total_reward
|
2146 |
+
value: 0.78 +/- 0.40
|
2147 |
name: Expert normalized total reward
|
2148 |
- task:
|
2149 |
type: reinforcement-learning
|
|
|
2153 |
type: metaworld-reach-wall
|
2154 |
metrics:
|
2155 |
- type: total_reward
|
2156 |
+
value: 681.90 +/- 186.63
|
2157 |
name: Total reward
|
2158 |
- type: expert_normalized_total_reward
|
2159 |
+
value: 0.89 +/- 0.31
|
2160 |
name: Expert normalized total reward
|
2161 |
- task:
|
2162 |
type: reinforcement-learning
|
|
|
2166 |
type: metaworld-reach
|
2167 |
metrics:
|
2168 |
- type: total_reward
|
2169 |
+
value: 347.45 +/- 190.66
|
2170 |
name: Total reward
|
2171 |
- type: expert_normalized_total_reward
|
2172 |
+
value: 0.37 +/- 0.36
|
2173 |
name: Expert normalized total reward
|
2174 |
- task:
|
2175 |
type: reinforcement-learning
|
|
|
2179 |
type: metaworld-shelf-place
|
2180 |
metrics:
|
2181 |
- type: total_reward
|
2182 |
+
value: 60.57 +/- 97.16
|
2183 |
name: Total reward
|
2184 |
- type: expert_normalized_total_reward
|
2185 |
+
value: 0.25 +/- 0.40
|
2186 |
name: Expert normalized total reward
|
2187 |
- task:
|
2188 |
type: reinforcement-learning
|
|
|
2192 |
type: metaworld-soccer
|
2193 |
metrics:
|
2194 |
- type: total_reward
|
2195 |
+
value: 309.21 +/- 172.64
|
2196 |
name: Total reward
|
2197 |
- type: expert_normalized_total_reward
|
2198 |
+
value: 0.82 +/- 0.47
|
2199 |
name: Expert normalized total reward
|
2200 |
- task:
|
2201 |
type: reinforcement-learning
|
|
|
2205 |
type: metaworld-stick-pull
|
2206 |
metrics:
|
2207 |
- type: total_reward
|
2208 |
+
value: 364.98 +/- 234.82
|
2209 |
name: Total reward
|
2210 |
- type: expert_normalized_total_reward
|
2211 |
+
value: 0.70 +/- 0.45
|
2212 |
name: Expert normalized total reward
|
2213 |
- task:
|
2214 |
type: reinforcement-learning
|
|
|
2218 |
type: metaworld-stick-push
|
2219 |
metrics:
|
2220 |
- type: total_reward
|
2221 |
+
value: 91.05 +/- 204.71
|
2222 |
name: Total reward
|
2223 |
- type: expert_normalized_total_reward
|
2224 |
+
value: 0.14 +/- 0.33
|
2225 |
name: Expert normalized total reward
|
2226 |
- task:
|
2227 |
type: reinforcement-learning
|
|
|
2231 |
type: metaworld-sweep-into
|
2232 |
metrics:
|
2233 |
- type: total_reward
|
2234 |
+
value: 714.98 +/- 209.19
|
2235 |
name: Total reward
|
2236 |
- type: expert_normalized_total_reward
|
2237 |
+
value: 0.89 +/- 0.27
|
2238 |
name: Expert normalized total reward
|
2239 |
- task:
|
2240 |
type: reinforcement-learning
|
|
|
2244 |
type: metaworld-sweep
|
2245 |
metrics:
|
2246 |
- type: total_reward
|
2247 |
+
value: 15.82 +/- 16.34
|
2248 |
name: Total reward
|
2249 |
- type: expert_normalized_total_reward
|
2250 |
+
value: 0.01 +/- 0.03
|
2251 |
name: Expert normalized total reward
|
2252 |
- task:
|
2253 |
type: reinforcement-learning
|
|
|
2257 |
type: metaworld-window-close
|
2258 |
metrics:
|
2259 |
- type: total_reward
|
2260 |
+
value: 347.90 +/- 222.50
|
2261 |
name: Total reward
|
2262 |
- type: expert_normalized_total_reward
|
2263 |
+
value: 0.54 +/- 0.42
|
2264 |
name: Expert normalized total reward
|
2265 |
- task:
|
2266 |
type: reinforcement-learning
|
|
|
2270 |
type: metaworld-window-open
|
2271 |
metrics:
|
2272 |
- type: total_reward
|
2273 |
+
value: 574.72 +/- 75.65
|
2274 |
name: Total reward
|
2275 |
- type: expert_normalized_total_reward
|
2276 |
+
value: 0.97 +/- 0.14
|
2277 |
name: Expert normalized total reward
|
2278 |
- task:
|
2279 |
type: reinforcement-learning
|
|
|
2283 |
type: mujoco-ant
|
2284 |
metrics:
|
2285 |
- type: total_reward
|
2286 |
+
value: 4993.13 +/- 1656.89
|
2287 |
name: Total reward
|
2288 |
- type: expert_normalized_total_reward
|
2289 |
+
value: 0.86 +/- 0.28
|
2290 |
name: Expert normalized total reward
|
2291 |
- task:
|
2292 |
type: reinforcement-learning
|
|
|
2296 |
type: mujoco-doublependulum
|
2297 |
metrics:
|
2298 |
- type: total_reward
|
2299 |
+
value: 8744.92 +/- 1471.45
|
2300 |
name: Total reward
|
2301 |
- type: expert_normalized_total_reward
|
2302 |
+
value: 0.94 +/- 0.16
|
2303 |
name: Expert normalized total reward
|
2304 |
- task:
|
2305 |
type: reinforcement-learning
|
|
|
2309 |
type: mujoco-halfcheetah
|
2310 |
metrics:
|
2311 |
- type: total_reward
|
2312 |
+
value: 6601.12 +/- 488.36
|
2313 |
name: Total reward
|
2314 |
- type: expert_normalized_total_reward
|
2315 |
+
value: 0.89 +/- 0.06
|
2316 |
name: Expert normalized total reward
|
2317 |
- task:
|
2318 |
type: reinforcement-learning
|
|
|
2322 |
type: mujoco-hopper
|
2323 |
metrics:
|
2324 |
- type: total_reward
|
2325 |
+
value: 1435.45 +/- 361.77
|
2326 |
name: Total reward
|
2327 |
- type: expert_normalized_total_reward
|
2328 |
+
value: 0.77 +/- 0.20
|
2329 |
name: Expert normalized total reward
|
2330 |
- task:
|
2331 |
type: reinforcement-learning
|
|
|
2335 |
type: mujoco-humanoid
|
2336 |
metrics:
|
2337 |
- type: total_reward
|
2338 |
+
value: 695.92 +/- 115.07
|
2339 |
name: Total reward
|
2340 |
- type: expert_normalized_total_reward
|
2341 |
value: 0.09 +/- 0.02
|
|
|
2348 |
type: mujoco-pendulum
|
2349 |
metrics:
|
2350 |
- type: total_reward
|
2351 |
+
value: 117.64 +/- 21.73
|
2352 |
name: Total reward
|
2353 |
- type: expert_normalized_total_reward
|
2354 |
+
value: 0.24 +/- 0.05
|
2355 |
name: Expert normalized total reward
|
2356 |
- task:
|
2357 |
type: reinforcement-learning
|
|
|
2361 |
type: mujoco-pusher
|
2362 |
metrics:
|
2363 |
- type: total_reward
|
2364 |
+
value: -24.93 +/- 6.47
|
2365 |
name: Total reward
|
2366 |
- type: expert_normalized_total_reward
|
2367 |
+
value: 1.00 +/- 0.05
|
2368 |
name: Expert normalized total reward
|
2369 |
- task:
|
2370 |
type: reinforcement-learning
|
|
|
2374 |
type: mujoco-reacher
|
2375 |
metrics:
|
2376 |
- type: total_reward
|
2377 |
+
value: -5.77 +/- 2.27
|
2378 |
name: Total reward
|
2379 |
- type: expert_normalized_total_reward
|
2380 |
+
value: 1.00 +/- 0.06
|
2381 |
name: Expert normalized total reward
|
2382 |
- task:
|
2383 |
type: reinforcement-learning
|
|
|
2387 |
type: mujoco-standup
|
2388 |
metrics:
|
2389 |
- type: total_reward
|
2390 |
+
value: 113587.22 +/- 21821.69
|
2391 |
name: Total reward
|
2392 |
- type: expert_normalized_total_reward
|
2393 |
+
value: 0.33 +/- 0.09
|
2394 |
name: Expert normalized total reward
|
2395 |
- task:
|
2396 |
type: reinforcement-learning
|
|
|
2400 |
type: mujoco-swimmer
|
2401 |
metrics:
|
2402 |
- type: total_reward
|
2403 |
+
value: 94.08 +/- 3.94
|
2404 |
name: Total reward
|
2405 |
- type: expert_normalized_total_reward
|
2406 |
+
value: 1.02 +/- 0.04
|
2407 |
name: Expert normalized total reward
|
2408 |
- task:
|
2409 |
type: reinforcement-learning
|
|
|
2413 |
type: mujoco-walker
|
2414 |
metrics:
|
2415 |
- type: total_reward
|
2416 |
+
value: 4381.69 +/- 848.39
|
2417 |
name: Total reward
|
2418 |
- type: expert_normalized_total_reward
|
2419 |
+
value: 0.95 +/- 0.18
|
2420 |
name: Expert normalized total reward
|
2421 |
---
|
2422 |
|
|
|
2440 |
## Training
|
2441 |
|
2442 |
<details>
|
2443 |
+
<summary>The model was trained on the following tasks:</summary>
|
2444 |
+
|
2445 |
- Alien
|
2446 |
- Amidar
|
2447 |
- Assault
|
|
|
2611 |
|
2612 |
model = AutoModelForCausalLM.from_pretrained("jat-project/jat")
|
2613 |
```
|
|