|
from pathlib import Path |
|
from time import sleep |
|
from time import time |
|
|
|
from fastai.vision.all import * |
|
from fastai.vision.widgets import * |
|
from fastbook import * |
|
from fastcore.parallel import * |
|
from fastdownload import download_url |
|
|
|
from google.colab import drive |
|
import gradio as gr |
|
from huggingface_hub import from_pretrained_fastai, notebook_login, push_to_hub_fastai |
|
import timm |
|
from torchvision.models import resnet18 |
|
import os |
|
|
|
learn = load_learner('model.pkl') |
|
|
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
demo=gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2)).launch(share=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|