2024_08_16_swinv2-base-patch4-window8-256

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4529
  • Accuracy: 0.8068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6942 1.0 87 0.6796 0.6818
0.6661 2.0 174 0.5973 0.7045
0.5666 3.0 261 0.5844 0.7045
0.6134 4.0 348 0.5798 0.7045
0.5207 5.0 435 0.5817 0.6932
0.75 6.0 522 0.5488 0.7159
0.4155 7.0 609 0.5373 0.7045
0.5122 8.0 696 0.5057 0.7386
0.722 9.0 783 0.4951 0.7045
0.5301 10.0 870 0.5349 0.7727
0.5881 11.0 957 0.4795 0.7955
0.5295 12.0 1044 0.4843 0.7955
0.6252 13.0 1131 0.4529 0.8068
0.9347 14.0 1218 0.4670 0.7955
0.5375 15.0 1305 0.4468 0.8068
0.4811 16.0 1392 0.4912 0.7841
0.5728 17.0 1479 0.4636 0.8068
0.7997 18.0 1566 0.4631 0.8068
0.4473 19.0 1653 0.4785 0.8068
0.4999 20.0 1740 0.5162 0.8068
0.4572 21.0 1827 0.5742 0.7955
0.2571 22.0 1914 0.5181 0.7955
0.5085 23.0 2001 0.4937 0.7955
0.7698 24.0 2088 0.4764 0.7955
0.558 25.0 2175 0.4742 0.8068
0.5462 26.0 2262 0.5320 0.7841
0.5218 27.0 2349 0.5298 0.7841
0.5228 28.0 2436 0.5182 0.7955
0.5787 29.0 2523 0.5104 0.8068
0.7511 30.0 2610 0.5152 0.8068

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Evaluation results