jbjeong91's picture
End of training
8ff9048 verified
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - cpo
  - generated_from_trainer
  - trl
  - cpo
  - generated_from_trainer
datasets:
  - princeton-nlp/llama3-ultrafeedback
model-index:
  - name: llama3.1-cpo-full-0912
    results: []

llama3.1-cpo-full-0912

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5985
  • Rewards/chosen: -15.4365
  • Rewards/rejected: -16.1367
  • Rewards/accuracies: 0.6239
  • Rewards/margins: 0.7002
  • Logps/rejected: -161.3668
  • Logps/chosen: -154.3647
  • Logits/rejected: -0.3853
  • Logits/chosen: -0.4112
  • Nll Loss: 0.4210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss
1.9362 0.2311 100 1.7930 -14.9339 -15.2848 0.5761 0.3508 -152.8475 -149.3394 -0.4123 -0.4378 0.4067
1.7019 0.4623 200 1.6786 -15.4303 -16.0131 0.6087 0.5828 -160.1311 -154.3027 -0.3358 -0.3580 0.4193
1.6388 0.6934 300 1.6233 -15.5465 -16.2127 0.6130 0.6662 -162.1269 -155.4650 -0.3582 -0.3828 0.4230
1.632 0.9246 400 1.6007 -15.6505 -16.3448 0.6370 0.6943 -163.4479 -156.5048 -0.3811 -0.4072 0.4277

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1