llama381binstruct_summarize_short_merged

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.5177 2.5 25 1.7211
0.432 5.0 50 1.8956
0.1093 7.5 75 2.5105
0.0237 10.0 100 2.4890
0.0133 12.5 125 2.5161
0.0039 15.0 150 2.5213
0.0049 17.5 175 2.5015
0.0025 20.0 200 2.6358
0.0013 22.5 225 2.7310
0.0047 25.0 250 2.5421
0.0013 27.5 275 2.6042
0.0009 30.0 300 2.6729
0.0008 32.5 325 2.6970
0.0007 35.0 350 2.7104
0.0007 37.5 375 2.7201
0.0006 40.0 400 2.7271
0.0006 42.5 425 2.7318
0.0006 45.0 450 2.7348
0.0006 47.5 475 2.7373
0.0006 50.0 500 2.7380

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for jcbthnflrs/llama381binstruct_summarize_short

Adapter
(69)
this model