File size: 14,386 Bytes
7452c1f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e0495b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e0495c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e0495cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e0495d40>", "_build": "<function ActorCriticPolicy._build at 0x7f78e0495dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e0495e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e0495ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e0495f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e041c050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e041c0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e041c170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e0466750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652189583.6224515, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3TWj24Lsy5LjBxucJHuziphII7Ij52OAAAgD8AAIA/zex+O48udbpjgSM4q052MxGNjjqt5Ti3AACAPwAAgD9mRSe9w90nuotIhTtYOYI4Q/UrO6DRILoAAIA/AACAP2am1b326Gi6L3aDulkvMDa7fRi7brKVOQAAgD8AAAAAvdSSPqE4kT9s1rw+XgWmvkubNT6uqS28AAAAAAAAAADNiOa+pYkuPzlvKD5MO3e+0mkMvgUwJD4AAAAAAAAAADM+1D7nJl0/9ifQPqsNmL5x3kc+0tZmPQAAAAAAAAAAM7G7vNLw3rsmb4G9jWwuvo/7A7sqs/U7AACAPwAAgD9zTzW+nGwjvA7bWTi0b9e1z5+JPZXke7cAAIA/AACAP00Gvz1cJz+6c0rpOSNoZbbC+C678/9ltQAAgD8AAIA/TQBEPRQCgbrjseu7KwynOPHzBjsFc7Q5AACAPwAAgD8mODO+8dfxPdapqzwwOGW+XN0yPX62PDwAAAAAAAAAAKaf5732CAG69urCOQZt3jbNYCs71mzjuAAAgD8AAIA/mjsGPFxHQ7oC6KM6DYoUtZjDFruc77q5AACAPwAAgD9mxLG94aCYurpS6TmjwCI42B6vOh12bLgAAIA/AACAP/qDjD6E5HI+Lbg6vrowUb7c/lA9LA6XuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Etvfy4tZECUhpRSlIwBbJRN6AOMAXSUR0B6Tev6j323dX2UKGgGaAloD0MIY9NKIRALZECUhpRSlGgVTegDaBZHQHpkl1Oj7AN1fZQoaAZoCWgPQwhOmDCaFTtjQJSGlFKUaBVN6ANoFkdAenJh7E5yVHV9lChoBmgJaA9DCNL+B1irxjpAlIaUUpRoFU3oA2gWR0B6dlZwGW2PdX2UKGgGaAloD0MI2AsFbAdaYUCUhpRSlGgVTegDaBZHQHqL1t0mtyR1fZQoaAZoCWgPQwg+rg0V4/9eQJSGlFKUaBVN6ANoFkdAepuWxQizLXV9lChoBmgJaA9DCO54k98irmdAlIaUUpRoFU2XAWgWR0B6n7uG9HtndX2UKGgGaAloD0MIw2Fp4EclZECUhpRSlGgVTegDaBZHQHqwAAQxveh1fZQoaAZoCWgPQwimtz8XDaheQJSGlFKUaBVN6ANoFkdAetMdat9x63V9lChoBmgJaA9DCO0t5Xyxa1RAlIaUUpRoFU3oA2gWR0B62MU34sVddX2UKGgGaAloD0MI944aE2J6PECUhpRSlGgVTegDaBZHQHrg8zqKP4p1fZQoaAZoCWgPQwhjC0EOShdfQJSGlFKUaBVN6ANoFkdAezGn1WbPQnV9lChoBmgJaA9DCDZaDvRQFmJAlIaUUpRoFU3oA2gWR0B7MuTxG2CvdX2UKGgGaAloD0MIr5P6srT/Q0CUhpRSlGgVTegDaBZHQHs+5jtoi9t1fZQoaAZoCWgPQwjysbtASYNXQJSGlFKUaBVN6ANoFkdAe1FcNYr8SHV9lChoBmgJaA9DCJqxaDo77VdAlIaUUpRoFU3oA2gWR0B7kF3s5XEJdX2UKGgGaAloD0MIxAWgUbqtVECUhpRSlGgVTegDaBZHQHutLhegL7Z1fZQoaAZoCWgPQwjfap24HCZeQJSGlFKUaBVN6ANoFkdAe8cuctoSMHV9lChoBmgJaA9DCJvLDYa6B2BAlIaUUpRoFU3oA2gWR0B71xKwpvxZdX2UKGgGaAloD0MIJgD/lCo0V0CUhpRSlGgVTegDaBZHQHvbVTrE9+x1fZQoaAZoCWgPQwhi1ouhnP9ZQJSGlFKUaBVN6ANoFkdAe/MhLGrCFnV9lChoBmgJaA9DCHjsZ7EUiF1AlIaUUpRoFU3oA2gWR0B8AqdTYNAkdX2UKGgGaAloD0MIf4XMlUF8U0CUhpRSlGgVTegDaBZHQHwGaqCHymR1fZQoaAZoCWgPQwjshQK2gzdgQJSGlFKUaBVN6ANoFkdAfBZzasZHeHV9lChoBmgJaA9DCGsotRfRdiLAlIaUUpRoFU0mAWgWR0B8GYt6HCXQdX2UKGgGaAloD0MIKULqdvbcUkCUhpRSlGgVTegDaBZHQHw4GCVbA1x1fZQoaAZoCWgPQwhy/FBpxGZNQJSGlFKUaBVN6ANoFkdAfD25kbxVhnV9lChoBmgJaA9DCJusUQ9RlmBAlIaUUpRoFU3oA2gWR0B8RTtpmEoOdX2UKGgGaAloD0MIRL+2fnrvYUCUhpRSlGgVTegDaBZHQHxNGgam4y51fZQoaAZoCWgPQwhBgXfy6c1TQJSGlFKUaBVN6ANoFkdAfE6DAaef7XV9lChoBmgJaA9DCKlMMQfBy2NAlIaUUpRoFU3oA2gWR0B8o3+Q2dd3dX2UKGgGaAloD0MISguXVdiLYkCUhpRSlGgVTegDaBZHQHy08do371t1fZQoaAZoCWgPQwhcV8wIb3tCwJSGlFKUaBVNTQFoFkdAfO/4B3iaRnV9lChoBmgJaA9DCL7cJ0cBeEpAlIaUUpRoFU3oA2gWR0B88F9hJAdGdX2UKGgGaAloD0MIC7YRT/YoYkCUhpRSlGgVTegDaBZHQH0NhiXpnpV1fZQoaAZoCWgPQwivIqMDEgFnQJSGlFKUaBVNEQNoFkdAfRMQOFxn4HV9lChoBmgJaA9DCABxV68i3FxAlIaUUpRoFU3oA2gWR0B9NsxEfDDTdX2UKGgGaAloD0MI9MMI4dGBUkCUhpRSlGgVTegDaBZHQH07CSidrft1fZQoaAZoCWgPQwiI1/UL9m9gQJSGlFKUaBVN6ANoFkdAfWPRYA80UHV9lChoBmgJaA9DCFqBIatb0VpAlIaUUpRoFU3oA2gWR0B9Z7hUBGQTdX2UKGgGaAloD0MIRztu+F0JYUCUhpRSlGgVTegDaBZHQH14WXTmW+p1fZQoaAZoCWgPQwj0o+GUuVVQQJSGlFKUaBVN6ANoFkdAfXttoSL613V9lChoBmgJaA9DCFLRWPs7FzvAlIaUUpRoFU0hAWgWR0B9itUDMeOodX2UKGgGaAloD0MIZvUOt0MfW0CUhpRSlGgVTegDaBZHQH2Zbehwl0J1fZQoaAZoCWgPQwgl63B0FYJgQJSGlFKUaBVN6ANoFkdAfZ6J3gUDdXV9lChoBmgJaA9DCAGnd/F+ylpAlIaUUpRoFU3oA2gWR0B9pWEnLJS0dX2UKGgGaAloD0MIi6ceaXAPXECUhpRSlGgVTegDaBZHQH2sSxeLNwB1fZQoaAZoCWgPQwj9FMeBV6s6QJSGlFKUaBVN6ANoFkdAfgETewcHW3V9lChoBmgJaA9DCPFKkud6ImFAlIaUUpRoFU3oA2gWR0B+EfOGCZnddX2UKGgGaAloD0MIpfljWpv2FsCUhpRSlGgVTWYBaBZHQH4rz72tdRl1fZQoaAZoCWgPQwgSpFLsaGFXQJSGlFKUaBVN6ANoFkdAfkwXE61b7nV9lChoBmgJaA9DCFFsBU1LKFFAlIaUUpRoFU3oA2gWR0B+THiNsFdLdX2UKGgGaAloD0MIOJ7PgHrsXECUhpRSlGgVTegDaBZHQH5mhLf1pTN1fZQoaAZoCWgPQwjzWDMyyEVhQJSGlFKUaBVN6ANoFkdAfmsBX0XgtXV9lChoBmgJaA9DCOv+sRAd4FFAlIaUUpRoFU3oA2gWR0B+i56HCXQddX2UKGgGaAloD0MI6gWf5uQBOMCUhpRSlGgVTQQBaBZHQH64ZMcp9Z11fZQoaAZoCWgPQwgIxyx7EulYQJSGlFKUaBVN6ANoFkdAfrvs0HhS+HV9lChoBmgJaA9DCDYFMjuLVVhAlIaUUpRoFU3oA2gWR0B+v9KIznA7dX2UKGgGaAloD0MI2xZlNsjCW0CUhpRSlGgVTegDaBZHQH7RR4QjD9B1fZQoaAZoCWgPQwjZdtoaEdhYQJSGlFKUaBVN6ANoFkdAftTp4rz5GnV9lChoBmgJaA9DCArcupsnwGJAlIaUUpRoFU3oA2gWR0B+81P8AJb/dX2UKGgGaAloD0MIO6sF9piRYkCUhpRSlGgVTegDaBZHQH75BtLteD51fZQoaAZoCWgPQwjezOhHw8NbQJSGlFKUaBVN6ANoFkdAfwEpS75EdHV9lChoBmgJaA9DCEtWRbjJa2FAlIaUUpRoFU3oA2gWR0B/CceIVM24dX2UKGgGaAloD0MIfCdmvRj7WECUhpRSlGgVTegDaBZHQH8YzjaPCEZ1fZQoaAZoCWgPQwjPL0rQ3yZnQJSGlFKUaBVN6ANoFkdAf3fCemNzbXV9lChoBmgJaA9DCHN/9bhvQ1ZAlIaUUpRoFU3oA2gWR0B/lrUXpGF0dX2UKGgGaAloD0MIMlab/1eFRMCUhpRSlGgVTWsBaBZHQH+vkSAYpDx1fZQoaAZoCWgPQwgWbvlIygFkQJSGlFKUaBVN6ANoFkdAf7or3Cbc5HV9lChoBmgJaA9DCF7yP/k7i2FAlIaUUpRoFU3oA2gWR0B/uoqlP8AJdX2UKGgGaAloD0MIaHqJscymaECUhpRSlGgVTcQCaBZHQH/VSbDuSfV1fZQoaAZoCWgPQwgEjgQa7ANiQJSGlFKUaBVN6ANoFkdAf9akZrHlwXV9lChoBmgJaA9DCBiXqrTFUmFAlIaUUpRoFU3oA2gWR0B//sCA+Y+jdX2UKGgGaAloD0MI8fJ0rihtYECUhpRSlGgVTegDaBZHQIAWR2t+1Bt1fZQoaAZoCWgPQwjZtFII5P5aQJSGlFKUaBVN6ANoFkdAgBpDtw71ZnV9lChoBmgJaA9DCMdjBirjRyTAlIaUUpRoFU1LAWgWR0CAHsDuBtk4dX2UKGgGaAloD0MImBk2yvoaXECUhpRSlGgVTegDaBZHQIAj/IhhYvF1fZQoaAZoCWgPQwhBf6FHjKtgQJSGlFKUaBVN6ANoFkdAgCXeZgG8mXV9lChoBmgJaA9DCECgM2lTDF9AlIaUUpRoFU3oA2gWR0CANUGSpzcRdX2UKGgGaAloD0MIGAYsuQomYkCUhpRSlGgVTegDaBZHQIA701sLv1F1fZQoaAZoCWgPQwiRYKqZNbljQJSGlFKUaBVN6ANoFkdAgD+iQtBfKXV9lChoBmgJaA9DCBqiCn+Gr0dAlIaUUpRoFU0aAWgWR0CART9R77bddX2UKGgGaAloD0MIequuQzXmVUCUhpRSlGgVTegDaBZHQIBGQlByCFt1fZQoaAZoCWgPQwg7rHDLR/xdQJSGlFKUaBVN6ANoFkdAgHOJKJ2t+3V9lChoBmgJaA9DCGzoZn+gKD5AlIaUUpRoFUvEaBZHQIB9FMwlByF1fZQoaAZoCWgPQwgcQL/v3yFfQJSGlFKUaBVN6ANoFkdAgIFeglF+eHV9lChoBmgJaA9DCMe7I2O10F9AlIaUUpRoFU3oA2gWR0CAjFdQfp2VdX2UKGgGaAloD0MIrP4Iw4BFYUCUhpRSlGgVTegDaBZHQICRGFev6j51fZQoaAZoCWgPQwjSxDvAk7VjQJSGlFKUaBVN6ANoFkdAgJFFJYkmhXV9lChoBmgJaA9DCCAkC5jAA1tAlIaUUpRoFU3oA2gWR0CAnEwDeTFEdX2UKGgGaAloD0MIXHUdqin6W0CUhpRSlGgVTegDaBZHQICt9FjNILB1fZQoaAZoCWgPQwhENpAuNo0MwJSGlFKUaBVNLQFoFkdAgLiUXxe9jHV9lChoBmgJaA9DCK/sgsE1+FxAlIaUUpRoFU3oA2gWR0CAwcLLIPsidX2UKGgGaAloD0MIkj8YeG7fYECUhpRSlGgVTegDaBZHQIDFaU3XI2h1fZQoaAZoCWgPQwhm22lrREFZQJSGlFKUaBVN6ANoFkdAgM2hBJI1+HV9lChoBmgJaA9DCA3iAzv+I1pAlIaUUpRoFU3oA2gWR0CAzw+5e7cxdX2UKGgGaAloD0MI16VG6GfpW0CUhpRSlGgVTegDaBZHQIDdBBkZrHl1fZQoaAZoCWgPQwhHPUSju15jQJSGlFKUaBVN6ANoFkdAgOLcJdB0IXV9lChoBmgJaA9DCJG3XP3YkF9AlIaUUpRoFU3oA2gWR0CA7Hf642CNdX2UKGgGaAloD0MIsFbtmpA/YkCUhpRSlGgVTegDaBZHQIDta/Efkmx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}