|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: camembert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: fr |
|
split: validation |
|
args: fr |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8826469710534169 |
|
- name: Recall |
|
type: recall |
|
value: 0.8992854971115841 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8908885542168675 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9472222222222222 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# camembert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2199 |
|
- Precision: 0.8826 |
|
- Recall: 0.8993 |
|
- F1: 0.8909 |
|
- Accuracy: 0.9472 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2955 | 1.0 | 2500 | 0.2667 | 0.8603 | 0.8784 | 0.8693 | 0.9369 | |
|
| 0.2089 | 2.0 | 5000 | 0.2269 | 0.8680 | 0.8953 | 0.8814 | 0.9443 | |
|
| 0.1617 | 3.0 | 7500 | 0.2199 | 0.8826 | 0.8993 | 0.8909 | 0.9472 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|