jeiku's picture
Upload 7 files
df9c2b8 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: qlora-out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: FriezaForce/unranked_theory_of_mind_roleplay
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

qlora-out

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
1.8421 0.06 1 1.8878
1.637 0.24 4 1.6567
1.7706 0.48 8 1.6450
1.7509 0.73 12 1.6757
1.4881 0.97 16 1.6913
0.6743 1.21 20 1.8874
0.6289 1.45 24 1.9861
0.582 1.7 28 1.9449
0.8624 1.94 32 1.8614
0.2466 2.18 36 2.3687
0.3151 2.42 40 2.3640
0.2263 2.67 44 2.1331
0.3841 2.91 48 2.2528
0.1032 3.15 52 2.3878
0.1015 3.39 56 2.5021
0.1185 3.64 60 2.3578
0.1111 3.88 64 2.3467
0.042 4.12 68 2.4165
0.0466 4.36 72 2.5006
0.0509 4.61 76 2.5430
0.0529 4.85 80 2.5515

Framework versions

  • PEFT 0.7.0
  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0