DRL
Browse files- README.md +1 -1
- config.json +1 -1
- my_first_model.zip +2 -2
- my_first_model/data +8 -8
- my_first_model/policy.optimizer.pth +2 -2
- my_first_model/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 267.03 +/- 17.57
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bef5c0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bef5c0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bef5c0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bef5c0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0bef5c0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bef5c0f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bef5c5040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bef5c50d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bef5c5160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bef5c51f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bef5c5280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bef5bd3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671367709980130580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYy8DvDeWe636gDPEFT/DVEb6w6RR34NAAAgD8AAIA/mo+ZvFwfajnY+H+7qzk4tj3i5TtSeZk6AACAPwAAgD9mfkG9XLtiupuP07mVOW602xQ6u8J09jgAAIA/AACAP82ZgTyus5C69lG+OzWv3zWoSQE74N/ANAAAgD8AAIA/zQ6QPVz7c7oWxjG4hgpGs0IW+Dm29E83AACAPwAAgD+aWNs9jwYxukceSDthG3k3nLQguLbfJjYAAAAAAACAP2bUIryRY/Y9fhwQPlEnZr47LR48QXuHPQAAAAAAAAAAANAfvexppLnATjG45oX9suN2ELr1f043AACAPwAAgD8zF3o8XMNvuhBlILtMosU3JtRsOmPGyjkAAIA/AACAP5qJ3zqO2IE+ptp0PT76gr5xlJA88ylVvAAAAAAAAAAA5l5KvdcEO7tyTYU8Oee1PNOyNLyyd5w9AACAPwAAgD/Nfk68e8KVulUMpbpc3pU1GBV3OnzcvjkAAIA/AACAP01UKr2ukbW6X2MUuokU+zOkttM3thEpOQAAgD8AAIA/M+8UPI9OSbpGO6K725tVNkipKjluM8W1AACAPwAAgD/Nij88uhMlPyO98rzJfaK+wr+yvPleFb0AAAAAAAAAAM1Co7zDsUq63XdAO7P+WjVj0Fe3+j9gugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknajj/k8YkCUhpRSlIwBbJRN6AOMAXSUR0CceHXSjQAudX2UKGgGaAloD0MIgA9euzT7aECUhpRSlGgVTegDaBZHQJx5fyrgflp1fZQoaAZoCWgPQwgxBtZxfLZlQJSGlFKUaBVN6ANoFkdAnH8w7HQyAXV9lChoBmgJaA9DCP5jIToEomZAlIaUUpRoFU3oA2gWR0CcgESw4bS7dX2UKGgGaAloD0MIkUPEzanbY0CUhpRSlGgVTegDaBZHQJyJThaTwDx1fZQoaAZoCWgPQwgW+8vuyUBoQJSGlFKUaBVN6ANoFkdAnJBGlhw2l3V9lChoBmgJaA9DCPiKbr2mMGFAlIaUUpRoFU3oA2gWR0CckbCIk7fYdX2UKGgGaAloD0MIqTKMu8ElYECUhpRSlGgVTegDaBZHQJyTafHxSYR1fZQoaAZoCWgPQwgYXHNHf29jQJSGlFKUaBVN6ANoFkdAnJPQMYuTR3V9lChoBmgJaA9DCE0vMZZpU2ZAlIaUUpRoFU3oA2gWR0CclMK+zt1IdX2UKGgGaAloD0MI2T7kLdd9Y0CUhpRSlGgVTegDaBZHQJyWSKVII4V1fZQoaAZoCWgPQwhGJ0ut99hgQJSGlFKUaBVN6ANoFkdAnJZf/3nIQ3V9lChoBmgJaA9DCDeMguDxyV1AlIaUUpRoFU3oA2gWR0Ccmz6ySmqHdX2UKGgGaAloD0MIMNl4sEUAY0CUhpRSlGgVTegDaBZHQJyeb9pAUtZ1fZQoaAZoCWgPQwhRZ+4hYb9iQJSGlFKUaBVN6ANoFkdAnLS89B8hLXV9lChoBmgJaA9DCEVLHk/L5mVAlIaUUpRoFU3oA2gWR0CcwBb+98JEdX2UKGgGaAloD0MIN1X3yOZ1cUCUhpRSlGgVTRQDaBZHQJzBJ7sv7Fd1fZQoaAZoCWgPQwh1WUxsvq5kQJSGlFKUaBVN6ANoFkdAnMWSU5dWyXV9lChoBmgJaA9DCN1dZ0N+eGBAlIaUUpRoFU3oA2gWR0Ccxnx8UmD2dX2UKGgGaAloD0MITvIjfsWwYUCUhpRSlGgVTegDaBZHQJzLYFJQLux1fZQoaAZoCWgPQwicGmg+Z/VhQJSGlFKUaBVN6ANoFkdAnNT5xNqQBHV9lChoBmgJaA9DCDdPdchNbmFAlIaUUpRoFU3oA2gWR0Cc287l7tzCdX2UKGgGaAloD0MIza/mAEHdYUCUhpRSlGgVTegDaBZHQJzdB2W6bvx1fZQoaAZoCWgPQwhMUMO3MEhhQJSGlFKUaBVN6ANoFkdAnN6jQ/oq1HV9lChoBmgJaA9DCH506srn/WZAlIaUUpRoFU3oA2gWR0Cc3vbJOnEVdX2UKGgGaAloD0MIFTYDXJCqZkCUhpRSlGgVTegDaBZHQJzf1TisGPh1fZQoaAZoCWgPQwgz+zxG+axgQJSGlFKUaBVN6ANoFkdAnOFL7fpD/nV9lChoBmgJaA9DCBhCzvt/jGBAlIaUUpRoFU3oA2gWR0Cc4WapPykLdX2UKGgGaAloD0MI078klamxZUCUhpRSlGgVTegDaBZHQJzl8xubZvl1fZQoaAZoCWgPQwgdVyO7UudoQJSGlFKUaBVN6ANoFkdAnOkpZr56+nV9lChoBmgJaA9DCDcZVYbxSmhAlIaUUpRoFU3oA2gWR0Cc6uDO1OTJdX2UKGgGaAloD0MIRxyygXR9ZECUhpRSlGgVTegDaBZHQJ0LcSJ0nw51fZQoaAZoCWgPQwhX7C+7p9BhQJSGlFKUaBVN6ANoFkdAnQyERradtnV9lChoBmgJaA9DCMWsF0M5ZmdAlIaUUpRoFU3oA2gWR0CdEV+gDifhdX2UKGgGaAloD0MIdXXHYhusYUCUhpRSlGgVTegDaBZHQJ0SXu0CzTp1fZQoaAZoCWgPQwjNO07RkXpQQJSGlFKUaBVLtmgWR0CdF1ThHbypdX2UKGgGaAloD0MIWFhwP+CAZECUhpRSlGgVTegDaBZHQJ0YDcwg1WN1fZQoaAZoCWgPQwgZPbfQFTdmQJSGlFKUaBVN6ANoFkdAnSHZz1bqyHV9lChoBmgJaA9DCMkcy7vqzmRAlIaUUpRoFU3oA2gWR0CdKHe18b71dX2UKGgGaAloD0MIfCjRksejYUCUhpRSlGgVTegDaBZHQJ0pvwSamXR1fZQoaAZoCWgPQwhhxD4BlDJkQJSGlFKUaBVN6ANoFkdAnStrvsqrinV9lChoBmgJaA9DCPc+VYWGbWNAlIaUUpRoFU3oA2gWR0CdK8tPHktFdX2UKGgGaAloD0MIu37BbtjhZ0CUhpRSlGgVTegDaBZHQJ0suWjXWe91fZQoaAZoCWgPQwgbECGunF1FQJSGlFKUaBVLwWgWR0CdLPzk6tDEdX2UKGgGaAloD0MI/N8RFar5aECUhpRSlGgVTegDaBZHQJ0uJ9H+ZPV1fZQoaAZoCWgPQwih15/EZ95jQJSGlFKUaBVN6ANoFkdAnS5IiX6ZY3V9lChoBmgJaA9DCGzQl97+bGBAlIaUUpRoFU3oA2gWR0CdMw6dDpkgdX2UKGgGaAloD0MIYTdsW5SpT0CUhpRSlGgVS7FoFkdAnTVmTTvy9XV9lChoBmgJaA9DCLtIoSz8i2FAlIaUUpRoFU3oA2gWR0CdNkhy8zyjdX2UKGgGaAloD0MI8X9HVKiIYkCUhpRSlGgVTegDaBZHQJ04GZE2Hcl1fZQoaAZoCWgPQwir7LsieOFjQJSGlFKUaBVN6ANoFkdAnVkeejEehnV9lChoBmgJaA9DCORKPQvCd2ZAlIaUUpRoFU3oA2gWR0CdX6nIhhYvdX2UKGgGaAloD0MIJCnpYehWYECUhpRSlGgVTegDaBZHQJ1gyMo+fRN1fZQoaAZoCWgPQwjT+IVXkgwlQJSGlFKUaBVLxWgWR0CdZjA44p+ddX2UKGgGaAloD0MI56p5jkhHZUCUhpRSlGgVTegDaBZHQJ1mXN2TxG51fZQoaAZoCWgPQwhb07zjFMhfQJSGlFKUaBVN6ANoFkdAnWchun/DL3V9lChoBmgJaA9DCESGVbyRBUtAlIaUUpRoFUvKaBZHQJ1y1Z+x4Y91fZQoaAZoCWgPQwiKyLCKtxthQJSGlFKUaBVN6ANoFkdAnXmasySFG3V9lChoBmgJaA9DCJktWRVhhGVAlIaUUpRoFU3oA2gWR0Cdex1RLsa9dX2UKGgGaAloD0MImQ6dnneaWUCUhpRSlGgVTegDaBZHQJ18/idat9x1fZQoaAZoCWgPQwitM74vLlpnQJSGlFKUaBVN6ANoFkdAnX1q6asp5XV9lChoBmgJaA9DCOUpq+n6wWRAlIaUUpRoFU3oA2gWR0CdfmylN1yOdX2UKGgGaAloD0MI6gd1kcIaZkCUhpRSlGgVTegDaBZHQJ1/8ZAIIGB1fZQoaAZoCWgPQwjLvcCs0EtlQJSGlFKUaBVN6ANoFkdAnYAKqKgqVnV9lChoBmgJaA9DCPW4b7XOyGNAlIaUUpRoFU3oA2gWR0CdhXJUHY6GdX2UKGgGaAloD0MIl1XYDHDSZUCUhpRSlGgVTegDaBZHQJ2IC19fCyh1fZQoaAZoCWgPQwjpgY/BioZnQJSGlFKUaBVN6ANoFkdAnYkXOGCZnnV9lChoBmgJaA9DCG8u/rani2BAlIaUUpRoFU3oA2gWR0Cdit/CIk7fdX2UKGgGaAloD0MIYLAbtq0ZY0CUhpRSlGgVTegDaBZHQJ2z9lWfbsZ1fZQoaAZoCWgPQwhffNEer11kQJSGlFKUaBVN6ANoFkdAnbU9eIEbHnV9lChoBmgJaA9DCOlfksqU0GBAlIaUUpRoFU3oA2gWR0CduzmLLpzLdX2UKGgGaAloD0MIONibGBKNZkCUhpRSlGgVTegDaBZHQJ28Q1Nxlxx1fZQoaAZoCWgPQwhcWDfenWtmQJSGlFKUaBVN6ANoFkdAnclAGW2PUHV9lChoBmgJaA9DCP1nzY8/W2VAlIaUUpRoFU3oA2gWR0Cdz6LsrupkdX2UKGgGaAloD0MI5DCYv8I9ZECUhpRSlGgVTegDaBZHQJ3RH5dnkDJ1fZQoaAZoCWgPQwjc8/xpo/VfQJSGlFKUaBVN6ANoFkdAndL+fmLcbnV9lChoBmgJaA9DCBFTIoleCWVAlIaUUpRoFU3oA2gWR0Cd02aG5+YudX2UKGgGaAloD0MIh97i4T15Y0CUhpRSlGgVTegDaBZHQJ3UZ2jfvWp1fZQoaAZoCWgPQwj/If32dedlQJSGlFKUaBVN6ANoFkdAndYmTot+TnV9lChoBmgJaA9DCCOHiJtTuWNAlIaUUpRoFU3oA2gWR0Cd1kAy2x6fdX2UKGgGaAloD0MIRS3NrRCTX0CUhpRSlGgVTegDaBZHQJ3bbJYDDCR1fZQoaAZoCWgPQwgbaD7nbolhQJSGlFKUaBVN6ANoFkdAnd4SLIgeR3V9lChoBmgJaA9DCPZcpibBnGJAlIaUUpRoFU3oA2gWR0Cd3wyXUpd9dX2UKGgGaAloD0MIC0Pk9HV0YUCUhpRSlGgVTegDaBZHQJ3gr+T/yXl1fZQoaAZoCWgPQwjU78LW7KRlQJSGlFKUaBVN6ANoFkdAngdzkyULUnV9lChoBmgJaA9DCLw7MlabCmdAlIaUUpRoFU3oA2gWR0CeCIe9Ba9sdX2UKGgGaAloD0MIuoEC7+SOZkCUhpRSlGgVTegDaBZHQJ4Niwqy4Wl1fZQoaAZoCWgPQwiR0JZzKZBkQJSGlFKUaBVN6ANoFkdAng5a2WpqAXV9lChoBmgJaA9DCFcHQNxVtGVAlIaUUpRoFU3oA2gWR0CeGREr5IpZdX2UKGgGaAloD0MIWFaalALYYkCUhpRSlGgVTegDaBZHQJ4fAeZG8VZ1fZQoaAZoCWgPQwih1jTvuF5mQJSGlFKUaBVN6ANoFkdAniBjg2qDLHV9lChoBmgJaA9DCH/ZPXlYwWZAlIaUUpRoFU3oA2gWR0CeIi/etSyddX2UKGgGaAloD0MIqIqp9BP2YUCUhpRSlGgVTegDaBZHQJ4ildzGPxR1fZQoaAZoCWgPQwixGktYG8pkQJSGlFKUaBVN6ANoFkdAniOwxFiKBXV9lChoBmgJaA9DCK2jqgmi/WdAlIaUUpRoFU3oA2gWR0CeJXmZ3LV4dX2UKGgGaAloD0MIfxe2ZqssY0CUhpRSlGgVTegDaBZHQJ4lmLm6oVF1fZQoaAZoCWgPQwiaYDjXMAZmQJSGlFKUaBVN6ANoFkdAnir8otthu3V9lChoBmgJaA9DCEgyq3e4ZGJAlIaUUpRoFU3oA2gWR0CeLbnfVI7OdX2UKGgGaAloD0MId2ouNxjqY0CUhpRSlGgVTegDaBZHQJ4utJFspG51fZQoaAZoCWgPQwifdY2WA3JkQJSGlFKUaBVN6ANoFkdAnjCW8IzFdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bef5c0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bef5c0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bef5c0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bef5c0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0bef5c0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bef5c0f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bef5c5040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bef5c50d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bef5c5160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bef5c51f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bef5c5280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bef5bd3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671371078186077587, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYkQz3Cp4I/RIWwPTb9Hb9UTbQ9y8nwPAAAAAAAAAAAAGrqPbZxxj66mWu+A+/SvgZeVr0CNlE8AAAAAAAAAACzmD09j/ZJunI+gTrhVYW2KEAbOViFf7UAAAAAAAAAAFo+pj0pLFG6u5tKu/NinTcQ8TC7aIQNOgAAAAAAAAAAM/O8uRSop7phoRG4b40stsk8oLpe0Ss3AACAPwAAgD+al3U8MzeIP/DCaD0k+RC/kAZOPaBb3zwAAAAAAAAAAI2D6j0kXII/H7I4PjVxFL9/ETY+UKkRPQAAAAAAAAAAM152va0Cmj9j/3O+msEZvxr+5r3mdjK9AAAAAAAAAACz7zs+7t/BPRV2oL72Hr2+7zSUvPZQCb0AAAAAAAAAAI0tvT09Lnw/Mg0NPjy8CL/OqBc+8oh/vAAAAAAAAAAAwCAUvjrhCj4CwT8+Uz+UvquVhb2TLZc9AAAAAAAAAAA6CQC+a4vJPjgkqT3cAeO+VhmmveExrTwAAAAAAAAAAM0llz096jm5JWDou8RaejbXJSa7UNrmtQAAAAAAAAAAM+T1PYC4hT+us9A+c+gUv8rrSz6rB18+AAAAAAAAAADAvYc9UmCtuaaCuToVbjM2M8myO4DO2rkAAAAAAAAAAE1tpj0ULou4Atblu8LxCTa+Txw7s45/tQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInX+77NeKcECUhpRSlIwBbJRLtIwBdJRHQKhVA/+Kjzt1fZQoaAZoCWgPQwg8LxUb871xQJSGlFKUaBVLxGgWR0CoVTLyMDOkdX2UKGgGaAloD0MIINCZtOkNc0CUhpRSlGgVS95oFkdAqFVbSNOuaHV9lChoBmgJaA9DCHmu78PBWXJAlIaUUpRoFUvyaBZHQKhVgliz9jx1fZQoaAZoCWgPQwi+pZwvNp5wQJSGlFKUaBVL1mgWR0CoVYzIFNcodX2UKGgGaAloD0MI3bQZp6HjckCUhpRSlGgVS9doFkdAqFWjB/I8yXV9lChoBmgJaA9DCP0ubM1WsWZAlIaUUpRoFU3oA2gWR0CoVbvIwM6SdX2UKGgGaAloD0MIA+li08rYcUCUhpRSlGgVS85oFkdAqFXcUoKD03V9lChoBmgJaA9DCHODoQ6rdG9AlIaUUpRoFUvraBZHQKhWFMURFql1fZQoaAZoCWgPQwg/UkSGVbNvQJSGlFKUaBVLy2gWR0CoVl5RbbDedX2UKGgGaAloD0MIPjxLkJHUbUCUhpRSlGgVS9RoFkdAqFZi9mHxjXV9lChoBmgJaA9DCBiyutXz4W5AlIaUUpRoFUuzaBZHQKhWd08NhE11fZQoaAZoCWgPQwjulXmrLvZvQJSGlFKUaBVLz2gWR0CoVoxGDtgKdX2UKGgGaAloD0MI84++SdMEc0CUhpRSlGgVS9RoFkdAqFavjwQUYnV9lChoBmgJaA9DCO6W5IAdTHFAlIaUUpRoFUvbaBZHQKhXP7IDHOt1fZQoaAZoCWgPQwjBbti2KJhvQJSGlFKUaBVL4mgWR0CoV4JM6BAfdX2UKGgGaAloD0MI0Lnb9VLqc0CUhpRSlGgVS9BoFkdAqFe+g+Qlr3V9lChoBmgJaA9DCB2PGahMEHJAlIaUUpRoFUvHaBZHQKhXygsbvPV1fZQoaAZoCWgPQwjNlUG1QStxQJSGlFKUaBVL5GgWR0CoV8+glF+edX2UKGgGaAloD0MIBd1e0lhPc0CUhpRSlGgVS8toFkdAqFgCW7e2u3V9lChoBmgJaA9DCCVZh6Or0HBAlIaUUpRoFUvJaBZHQKhYBtEXtSh1fZQoaAZoCWgPQwgyIlFo2U9xQJSGlFKUaBVLu2gWR0CoWAu+RHPNdX2UKGgGaAloD0MIW7Iqwo2tckCUhpRSlGgVS+doFkdAqFh5SBK+SXV9lChoBmgJaA9DCN52obkOsnBAlIaUUpRoFUu9aBZHQKhY2IO6NER1fZQoaAZoCWgPQwgx0ova/fpyQJSGlFKUaBVL4mgWR0CoWOqnFYMfdX2UKGgGaAloD0MI6ui4Ghk+cUCUhpRSlGgVS9ZoFkdAqFkL8+A3DXV9lChoBmgJaA9DCM8u3/owuW9AlIaUUpRoFUviaBZHQKhZNt3wCr91fZQoaAZoCWgPQwhsQ8U4v6VwQJSGlFKUaBVL12gWR0CoWXC5/b0wdX2UKGgGaAloD0MIbJbLRueyb0CUhpRSlGgVS8ZoFkdAqFnMgQpWm3V9lChoBmgJaA9DCG6JXHDGG3JAlIaUUpRoFU0UAWgWR0CoWhLxZuAJdX2UKGgGaAloD0MILjiDvx+EckCUhpRSlGgVS8loFkdAqFoataIN3HV9lChoBmgJaA9DCBcOhGTBenBAlIaUUpRoFUu6aBZHQKhaIuCf6Gh1fZQoaAZoCWgPQwi+hAoOL0FvQJSGlFKUaBVLvWgWR0CoWkGhmGucdX2UKGgGaAloD0MIiq2gaQmScUCUhpRSlGgVS65oFkdAqFpDho/RmnV9lChoBmgJaA9DCB8PfXcruG9AlIaUUpRoFUvFaBZHQKhaguanaWZ1fZQoaAZoCWgPQwigpSvYhs1xQJSGlFKUaBVL3WgWR0CoWpjLbHp9dX2UKGgGaAloD0MIMc9KWjFYc0CUhpRSlGgVS79oFkdAqFrqVUuL8HV9lChoBmgJaA9DCKvP1Vbs329AlIaUUpRoFUvcaBZHQKhmTs67ulZ1fZQoaAZoCWgPQwg3x7lNuGFyQJSGlFKUaBVL2mgWR0CoZlv8Q7LddX2UKGgGaAloD0MIRRK9jGKkb0CUhpRSlGgVS9BoFkdAqGaN58jRlnV9lChoBmgJaA9DCPQyiuXWUXJAlIaUUpRoFU0FAWgWR0CoZyDkuHvddX2UKGgGaAloD0MIaOp1iwBRcUCUhpRSlGgVS+loFkdAqGctM9KVZHV9lChoBmgJaA9DCDp5kQk4WnBAlIaUUpRoFUvNaBZHQKhnK9q1w5x1fZQoaAZoCWgPQwiVm6ilOWBwQJSGlFKUaBVLwmgWR0CoZ0yzgMtsdX2UKGgGaAloD0MIgzRj0fQrckCUhpRSlGgVS81oFkdAqGewJTl1bXV9lChoBmgJaA9DCLWM1HtqTXBAlIaUUpRoFUvdaBZHQKhnv8baRIV1fZQoaAZoCWgPQwgpQup2NspwQJSGlFKUaBVL1GgWR0CoZ8af8MuwdX2UKGgGaAloD0MIcqPIWsMRckCUhpRSlGgVS75oFkdAqGfIhUzbe3V9lChoBmgJaA9DCCLDKt4I2nJAlIaUUpRoFU0AAWgWR0CoaEiEpRXPdX2UKGgGaAloD0MI9ifxudMVc0CUhpRSlGgVS+RoFkdAqGhqxTsIFHV9lChoBmgJaA9DCBsv3STGaXFAlIaUUpRoFUvYaBZHQKhomUKRdQh1fZQoaAZoCWgPQwjsMCb9PYBtQJSGlFKUaBVLz2gWR0CoaT/PX05EdX2UKGgGaAloD0MIsHJoke2pcECUhpRSlGgVS+FoFkdAqGmWIuXeFnV9lChoBmgJaA9DCPMEwk4xQ3BAlIaUUpRoFUvSaBZHQKhqPUz9CNV1fZQoaAZoCWgPQwj9o2/SdPVwQJSGlFKUaBVLzWgWR0Coak3cxj8UdX2UKGgGaAloD0MIwsBz76ECcECUhpRSlGgVS79oFkdAqGp7ZDiOvXV9lChoBmgJaA9DCGCPiZQmZ3FAlIaUUpRoFUvmaBZHQKhqh6Q/5cl1fZQoaAZoCWgPQwhZpl8i3s1wQJSGlFKUaBVLzGgWR0Coar0gr6LwdX2UKGgGaAloD0MI0QZgAyLZcUCUhpRSlGgVS9RoFkdAqGrmbmU4aXV9lChoBmgJaA9DCGmLa3wmXG9AlIaUUpRoFUvdaBZHQKhrAmVqveR1fZQoaAZoCWgPQwh0llmEYs5xQJSGlFKUaBVL4GgWR0Coa5fseGO/dX2UKGgGaAloD0MI1nQ90XUbb0CUhpRSlGgVS9ZoFkdAqGubIFNcnnV9lChoBmgJaA9DCBUA4xn0inJAlIaUUpRoFUvzaBZHQKhsSdsi0OV1fZQoaAZoCWgPQwjjbDoCuEFxQJSGlFKUaBVLxmgWR0CobFTuv2XcdX2UKGgGaAloD0MIxysQPalkcUCUhpRSlGgVS9JoFkdAqGzgF5fMOnV9lChoBmgJaA9DCHODoQ7rAnNAlIaUUpRoFU3tAmgWR0CobUGhufmLdX2UKGgGaAloD0MI8rVnlgRMcUCUhpRSlGgVS8xoFkdAqG1uNT987nV9lChoBmgJaA9DCANf0a3XmXBAlIaUUpRoFUvSaBZHQKhte8274BV1fZQoaAZoCWgPQwiV1XQ9kfZwQJSGlFKUaBVL2mgWR0Cobd/xlQMydX2UKGgGaAloD0MI3q8CfPe0cUCUhpRSlGgVS+NoFkdAqG358QZn+XV9lChoBmgJaA9DCCEjoMJRbHJAlIaUUpRoFUvaaBZHQKhuGEbo8p11fZQoaAZoCWgPQwi9/48TJrByQJSGlFKUaBVL0mgWR0CobiAnlXA/dX2UKGgGaAloD0MIKq2/JUDlcUCUhpRSlGgVS85oFkdAqG41upCKJnV9lChoBmgJaA9DCH79EBssAGZAlIaUUpRoFU3oA2gWR0Cobmhhx5s1dX2UKGgGaAloD0MI9KRMamgncUCUhpRSlGgVS7doFkdAqG5uEug6EXV9lChoBmgJaA9DCH2vIThujHBAlIaUUpRoFUvXaBZHQKhu1BCUorp1fZQoaAZoCWgPQwi0c5oF2pJuQJSGlFKUaBVL0WgWR0Cob02zWwu/dX2UKGgGaAloD0MI4ZnQJPFtckCUhpRSlGgVS+NoFkdAqG+VE9dNWXV9lChoBmgJaA9DCKNXA5TGenJAlIaUUpRoFUveaBZHQKhwAad+Xqt1fZQoaAZoCWgPQwiHGoUkcypyQJSGlFKUaBVLumgWR0CocApUPxx2dX2UKGgGaAloD0MIxsN7DiwMckCUhpRSlGgVS8xoFkdAqHBc+xGDtnV9lChoBmgJaA9DCHZR9MAHInRAlIaUUpRoFUvfaBZHQKhwa9QGfPJ1fZQoaAZoCWgPQwgE5bZ9T7dxQJSGlFKUaBVLvmgWR0CocJ3qRlpXdX2UKGgGaAloD0MIk6gXfBpec0CUhpRSlGgVS/JoFkdAqHFKkZaV2XV9lChoBmgJaA9DCFgepKcIYXFAlIaUUpRoFUvRaBZHQKhxWFdszl91fZQoaAZoCWgPQwh2NXnKatdwQJSGlFKUaBVL72gWR0CocXeyRjjJdX2UKGgGaAloD0MIOiS1UHJOcUCUhpRSlGgVS9xoFkdAqHF99c8klnV9lChoBmgJaA9DCBAgQ8dOeHJAlIaUUpRoFUvyaBZHQKhxmoCMglp1fZQoaAZoCWgPQwi+Zrls9E5vQJSGlFKUaBVLx2gWR0Coca4gieNDdX2UKGgGaAloD0MInPwWnSwqb0CUhpRSlGgVS8VoFkdAqHIpqZc9n3V9lChoBmgJaA9DCJd1/1jIPXNAlIaUUpRoFUvPaBZHQKhzJRplBhR1fZQoaAZoCWgPQwgXLUDb6n1vQJSGlFKUaBVL1mgWR0CoczhV2icodX2UKGgGaAloD0MIT+eKUsKAcUCUhpRSlGgVS81oFkdAqHN+clPac3V9lChoBmgJaA9DCED5u3fUCm9AlIaUUpRoFUvCaBZHQKhzj0EHMU11fZQoaAZoCWgPQwiq8dJNou9xQJSGlFKUaBVLvGgWR0CodG6Mir1edX2UKGgGaAloD0MIOslWl5OKc0CUhpRSlGgVS8poFkdAqHSL0Dlo13V9lChoBmgJaA9DCJcfuMqT0W9AlIaUUpRoFUvDaBZHQKh0lIRRMvh1fZQoaAZoCWgPQwir56T3jeZxQJSGlFKUaBVL1WgWR0CodKxVp9JCdX2UKGgGaAloD0MItoZSexH5cECUhpRSlGgVS8NoFkdAqHTJhnanJnV9lChoBmgJaA9DCC6RC87goG5AlIaUUpRoFUvMaBZHQKh02aWom5V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
my_first_model.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbf46c7e5a955c4743a770b65486cdeecb523025a23e5a5e7ed6c98865c5fabc
|
3 |
+
size 147093
|
my_first_model/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,18 +66,18 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671371078186077587,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYkQz3Cp4I/RIWwPTb9Hb9UTbQ9y8nwPAAAAAAAAAAAAGrqPbZxxj66mWu+A+/SvgZeVr0CNlE8AAAAAAAAAACzmD09j/ZJunI+gTrhVYW2KEAbOViFf7UAAAAAAAAAAFo+pj0pLFG6u5tKu/NinTcQ8TC7aIQNOgAAAAAAAAAAM/O8uRSop7phoRG4b40stsk8oLpe0Ss3AACAPwAAgD+al3U8MzeIP/DCaD0k+RC/kAZOPaBb3zwAAAAAAAAAAI2D6j0kXII/H7I4PjVxFL9/ETY+UKkRPQAAAAAAAAAAM152va0Cmj9j/3O+msEZvxr+5r3mdjK9AAAAAAAAAACz7zs+7t/BPRV2oL72Hr2+7zSUvPZQCb0AAAAAAAAAAI0tvT09Lnw/Mg0NPjy8CL/OqBc+8oh/vAAAAAAAAAAAwCAUvjrhCj4CwT8+Uz+UvquVhb2TLZc9AAAAAAAAAAA6CQC+a4vJPjgkqT3cAeO+VhmmveExrTwAAAAAAAAAAM0llz096jm5JWDou8RaejbXJSa7UNrmtQAAAAAAAAAAM+T1PYC4hT+us9A+c+gUv8rrSz6rB18+AAAAAAAAAADAvYc9UmCtuaaCuToVbjM2M8myO4DO2rkAAAAAAAAAAE1tpj0ULou4Atblu8LxCTa+Txw7s45/tQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInX+77NeKcECUhpRSlIwBbJRLtIwBdJRHQKhVA/+Kjzt1fZQoaAZoCWgPQwg8LxUb871xQJSGlFKUaBVLxGgWR0CoVTLyMDOkdX2UKGgGaAloD0MIINCZtOkNc0CUhpRSlGgVS95oFkdAqFVbSNOuaHV9lChoBmgJaA9DCHmu78PBWXJAlIaUUpRoFUvyaBZHQKhVgliz9jx1fZQoaAZoCWgPQwi+pZwvNp5wQJSGlFKUaBVL1mgWR0CoVYzIFNcodX2UKGgGaAloD0MI3bQZp6HjckCUhpRSlGgVS9doFkdAqFWjB/I8yXV9lChoBmgJaA9DCP0ubM1WsWZAlIaUUpRoFU3oA2gWR0CoVbvIwM6SdX2UKGgGaAloD0MIA+li08rYcUCUhpRSlGgVS85oFkdAqFXcUoKD03V9lChoBmgJaA9DCHODoQ6rdG9AlIaUUpRoFUvraBZHQKhWFMURFql1fZQoaAZoCWgPQwg/UkSGVbNvQJSGlFKUaBVLy2gWR0CoVl5RbbDedX2UKGgGaAloD0MIPjxLkJHUbUCUhpRSlGgVS9RoFkdAqFZi9mHxjXV9lChoBmgJaA9DCBiyutXz4W5AlIaUUpRoFUuzaBZHQKhWd08NhE11fZQoaAZoCWgPQwjulXmrLvZvQJSGlFKUaBVLz2gWR0CoVoxGDtgKdX2UKGgGaAloD0MI84++SdMEc0CUhpRSlGgVS9RoFkdAqFavjwQUYnV9lChoBmgJaA9DCO6W5IAdTHFAlIaUUpRoFUvbaBZHQKhXP7IDHOt1fZQoaAZoCWgPQwjBbti2KJhvQJSGlFKUaBVL4mgWR0CoV4JM6BAfdX2UKGgGaAloD0MI0Lnb9VLqc0CUhpRSlGgVS9BoFkdAqFe+g+Qlr3V9lChoBmgJaA9DCB2PGahMEHJAlIaUUpRoFUvHaBZHQKhXygsbvPV1fZQoaAZoCWgPQwjNlUG1QStxQJSGlFKUaBVL5GgWR0CoV8+glF+edX2UKGgGaAloD0MIBd1e0lhPc0CUhpRSlGgVS8toFkdAqFgCW7e2u3V9lChoBmgJaA9DCCVZh6Or0HBAlIaUUpRoFUvJaBZHQKhYBtEXtSh1fZQoaAZoCWgPQwgyIlFo2U9xQJSGlFKUaBVLu2gWR0CoWAu+RHPNdX2UKGgGaAloD0MIW7Iqwo2tckCUhpRSlGgVS+doFkdAqFh5SBK+SXV9lChoBmgJaA9DCN52obkOsnBAlIaUUpRoFUu9aBZHQKhY2IO6NER1fZQoaAZoCWgPQwgx0ova/fpyQJSGlFKUaBVL4mgWR0CoWOqnFYMfdX2UKGgGaAloD0MI6ui4Ghk+cUCUhpRSlGgVS9ZoFkdAqFkL8+A3DXV9lChoBmgJaA9DCM8u3/owuW9AlIaUUpRoFUviaBZHQKhZNt3wCr91fZQoaAZoCWgPQwhsQ8U4v6VwQJSGlFKUaBVL12gWR0CoWXC5/b0wdX2UKGgGaAloD0MIbJbLRueyb0CUhpRSlGgVS8ZoFkdAqFnMgQpWm3V9lChoBmgJaA9DCG6JXHDGG3JAlIaUUpRoFU0UAWgWR0CoWhLxZuAJdX2UKGgGaAloD0MILjiDvx+EckCUhpRSlGgVS8loFkdAqFoataIN3HV9lChoBmgJaA9DCBcOhGTBenBAlIaUUpRoFUu6aBZHQKhaIuCf6Gh1fZQoaAZoCWgPQwi+hAoOL0FvQJSGlFKUaBVLvWgWR0CoWkGhmGucdX2UKGgGaAloD0MIiq2gaQmScUCUhpRSlGgVS65oFkdAqFpDho/RmnV9lChoBmgJaA9DCB8PfXcruG9AlIaUUpRoFUvFaBZHQKhaguanaWZ1fZQoaAZoCWgPQwigpSvYhs1xQJSGlFKUaBVL3WgWR0CoWpjLbHp9dX2UKGgGaAloD0MIMc9KWjFYc0CUhpRSlGgVS79oFkdAqFrqVUuL8HV9lChoBmgJaA9DCKvP1Vbs329AlIaUUpRoFUvcaBZHQKhmTs67ulZ1fZQoaAZoCWgPQwg3x7lNuGFyQJSGlFKUaBVL2mgWR0CoZlv8Q7LddX2UKGgGaAloD0MIRRK9jGKkb0CUhpRSlGgVS9BoFkdAqGaN58jRlnV9lChoBmgJaA9DCPQyiuXWUXJAlIaUUpRoFU0FAWgWR0CoZyDkuHvddX2UKGgGaAloD0MIaOp1iwBRcUCUhpRSlGgVS+loFkdAqGctM9KVZHV9lChoBmgJaA9DCDp5kQk4WnBAlIaUUpRoFUvNaBZHQKhnK9q1w5x1fZQoaAZoCWgPQwiVm6ilOWBwQJSGlFKUaBVLwmgWR0CoZ0yzgMtsdX2UKGgGaAloD0MIgzRj0fQrckCUhpRSlGgVS81oFkdAqGewJTl1bXV9lChoBmgJaA9DCLWM1HtqTXBAlIaUUpRoFUvdaBZHQKhnv8baRIV1fZQoaAZoCWgPQwgpQup2NspwQJSGlFKUaBVL1GgWR0CoZ8af8MuwdX2UKGgGaAloD0MIcqPIWsMRckCUhpRSlGgVS75oFkdAqGfIhUzbe3V9lChoBmgJaA9DCCLDKt4I2nJAlIaUUpRoFU0AAWgWR0CoaEiEpRXPdX2UKGgGaAloD0MI9ifxudMVc0CUhpRSlGgVS+RoFkdAqGhqxTsIFHV9lChoBmgJaA9DCBsv3STGaXFAlIaUUpRoFUvYaBZHQKhomUKRdQh1fZQoaAZoCWgPQwjsMCb9PYBtQJSGlFKUaBVLz2gWR0CoaT/PX05EdX2UKGgGaAloD0MIsHJoke2pcECUhpRSlGgVS+FoFkdAqGmWIuXeFnV9lChoBmgJaA9DCPMEwk4xQ3BAlIaUUpRoFUvSaBZHQKhqPUz9CNV1fZQoaAZoCWgPQwj9o2/SdPVwQJSGlFKUaBVLzWgWR0Coak3cxj8UdX2UKGgGaAloD0MIwsBz76ECcECUhpRSlGgVS79oFkdAqGp7ZDiOvXV9lChoBmgJaA9DCGCPiZQmZ3FAlIaUUpRoFUvmaBZHQKhqh6Q/5cl1fZQoaAZoCWgPQwhZpl8i3s1wQJSGlFKUaBVLzGgWR0Coar0gr6LwdX2UKGgGaAloD0MI0QZgAyLZcUCUhpRSlGgVS9RoFkdAqGrmbmU4aXV9lChoBmgJaA9DCGmLa3wmXG9AlIaUUpRoFUvdaBZHQKhrAmVqveR1fZQoaAZoCWgPQwh0llmEYs5xQJSGlFKUaBVL4GgWR0Coa5fseGO/dX2UKGgGaAloD0MI1nQ90XUbb0CUhpRSlGgVS9ZoFkdAqGubIFNcnnV9lChoBmgJaA9DCBUA4xn0inJAlIaUUpRoFUvzaBZHQKhsSdsi0OV1fZQoaAZoCWgPQwjjbDoCuEFxQJSGlFKUaBVLxmgWR0CobFTuv2XcdX2UKGgGaAloD0MIxysQPalkcUCUhpRSlGgVS9JoFkdAqGzgF5fMOnV9lChoBmgJaA9DCHODoQ7rAnNAlIaUUpRoFU3tAmgWR0CobUGhufmLdX2UKGgGaAloD0MI8rVnlgRMcUCUhpRSlGgVS8xoFkdAqG1uNT987nV9lChoBmgJaA9DCANf0a3XmXBAlIaUUpRoFUvSaBZHQKhte8274BV1fZQoaAZoCWgPQwiV1XQ9kfZwQJSGlFKUaBVL2mgWR0Cobd/xlQMydX2UKGgGaAloD0MI3q8CfPe0cUCUhpRSlGgVS+NoFkdAqG358QZn+XV9lChoBmgJaA9DCCEjoMJRbHJAlIaUUpRoFUvaaBZHQKhuGEbo8p11fZQoaAZoCWgPQwi9/48TJrByQJSGlFKUaBVL0mgWR0CobiAnlXA/dX2UKGgGaAloD0MIKq2/JUDlcUCUhpRSlGgVS85oFkdAqG41upCKJnV9lChoBmgJaA9DCH79EBssAGZAlIaUUpRoFU3oA2gWR0Cobmhhx5s1dX2UKGgGaAloD0MI9KRMamgncUCUhpRSlGgVS7doFkdAqG5uEug6EXV9lChoBmgJaA9DCH2vIThujHBAlIaUUpRoFUvXaBZHQKhu1BCUorp1fZQoaAZoCWgPQwi0c5oF2pJuQJSGlFKUaBVL0WgWR0Cob02zWwu/dX2UKGgGaAloD0MI4ZnQJPFtckCUhpRSlGgVS+NoFkdAqG+VE9dNWXV9lChoBmgJaA9DCKNXA5TGenJAlIaUUpRoFUveaBZHQKhwAad+Xqt1fZQoaAZoCWgPQwiHGoUkcypyQJSGlFKUaBVLumgWR0CocApUPxx2dX2UKGgGaAloD0MIxsN7DiwMckCUhpRSlGgVS8xoFkdAqHBc+xGDtnV9lChoBmgJaA9DCHZR9MAHInRAlIaUUpRoFUvfaBZHQKhwa9QGfPJ1fZQoaAZoCWgPQwgE5bZ9T7dxQJSGlFKUaBVLvmgWR0CocJ3qRlpXdX2UKGgGaAloD0MIk6gXfBpec0CUhpRSlGgVS/JoFkdAqHFKkZaV2XV9lChoBmgJaA9DCFgepKcIYXFAlIaUUpRoFUvRaBZHQKhxWFdszl91fZQoaAZoCWgPQwh2NXnKatdwQJSGlFKUaBVL72gWR0CocXeyRjjJdX2UKGgGaAloD0MIOiS1UHJOcUCUhpRSlGgVS9xoFkdAqHF99c8klnV9lChoBmgJaA9DCBAgQ8dOeHJAlIaUUpRoFUvyaBZHQKhxmoCMglp1fZQoaAZoCWgPQwi+Zrls9E5vQJSGlFKUaBVLx2gWR0Coca4gieNDdX2UKGgGaAloD0MInPwWnSwqb0CUhpRSlGgVS8VoFkdAqHIpqZc9n3V9lChoBmgJaA9DCJd1/1jIPXNAlIaUUpRoFUvPaBZHQKhzJRplBhR1fZQoaAZoCWgPQwgXLUDb6n1vQJSGlFKUaBVL1mgWR0CoczhV2icodX2UKGgGaAloD0MIT+eKUsKAcUCUhpRSlGgVS81oFkdAqHN+clPac3V9lChoBmgJaA9DCED5u3fUCm9AlIaUUpRoFUvCaBZHQKhzj0EHMU11fZQoaAZoCWgPQwiq8dJNou9xQJSGlFKUaBVLvGgWR0CodG6Mir1edX2UKGgGaAloD0MIOslWl5OKc0CUhpRSlGgVS8poFkdAqHSL0Dlo13V9lChoBmgJaA9DCJcfuMqT0W9AlIaUUpRoFUvDaBZHQKh0lIRRMvh1fZQoaAZoCWgPQwir56T3jeZxQJSGlFKUaBVL1WgWR0CodKxVp9JCdX2UKGgGaAloD0MItoZSexH5cECUhpRSlGgVS8NoFkdAqHTJhnanJnV9lChoBmgJaA9DCC6RC87goG5AlIaUUpRoFUvMaBZHQKh02aWom5V1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 368,
|
79 |
"n_steps": 1024,
|
80 |
+
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
my_first_model/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6f482adf75f21b7a07eeca741cd5df6eac1bbf4c584634b96b2f8d06ac36352
|
3 |
+
size 87929
|
my_first_model/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:642e3a7286ffbe860ff51abcb063de719cbb381de7662f36c4a3bec6abffb657
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.03281409645405, "std_reward": 17.570888320321533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T14:17:58.167466"}
|