metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: BAAI/bge-m3
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 숙소가 기대했던 것 이상으로 좋았습니다.
sentences:
- 숙소가 생각보다 좋았어요.
- 어떻게 해야 환풍기를 작동시킬 수 있어?
- 우리 집 바로 옆에 슈퍼마켓이 있는데, 무엇보다도 조용해요.
- source_sentence: 위치, 청결 상태, 주변 편의시설 모든게 좋았어요.
sentences:
- 집주인이 있기에 이 나라에서 잊을 수 없는 추억을 남겼습니다.
- 두 개 방 모두에서 누우면 에펠탑이 보입니다!
- 위치와 청결도 편의시설 크기 등등 모든게 좋습니다.
- source_sentence: 인내심을 가지고 결실을 맺는다는 자세가 필요합니다.
sentences:
- >-
같은 날, 바이오 산업은 정부에게 바이오 전문가 공급 시설, 새로운 시장 창출을 위한 규제 완화, 세금과 같은 인센티브 확대 등을
제안했습니다.
- 그런 점에서 매우 힘든 기간을 보내고 계십니다.
- 접속 가능한 계정 네이트나 네이버 메일 중 하나만 알려줘
- source_sentence: 비가 올지 맑을지 오늘 날씨를 찾아봐줄래?
sentences:
- 이번 태풍 진행 방향은?
- 제가 지메일을 몇 번 가입했는지 알려주실 수 있나요?
- 할부지 덕분에 산타모니카에 있는 내내 행복했어요.
- source_sentence: 티비 켜고 싶은데 말로 어떻게 명령해야하는 지 알려줘
sentences:
- 가습기 어떻게 써?
- 친절한 설명으로 많은 도움이 되었습니다.
- 에어컨과 뜨거운 물 모두 좋았습니다.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.9599773741282561
name: Pearson Cosine
- type: spearman_cosine
value: 0.9215829115320294
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9448530221078223
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9182945172058137
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9451692315193281
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9184981231098932
name: Spearman Euclidean
- type: pearson_dot
value: 0.9576506770371606
name: Pearson Dot
- type: spearman_dot
value: 0.9159848293826075
name: Spearman Dot
- type: pearson_max
value: 0.9599773741282561
name: Pearson Max
- type: spearman_max
value: 0.9215829115320294
name: Spearman Max
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jeonseonjin/embedding_BAAI-bge-m3")
# Run inference
sentences = [
'티비 켜고 싶은데 말로 어떻게 명령해야하는 지 알려줘',
'가습기 어떻게 써?',
'친절한 설명으로 많은 도움이 되었습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.96 |
spearman_cosine | 0.9216 |
pearson_manhattan | 0.9449 |
spearman_manhattan | 0.9183 |
pearson_euclidean | 0.9452 |
spearman_euclidean | 0.9185 |
pearson_dot | 0.9577 |
spearman_dot | 0.916 |
pearson_max | 0.96 |
spearman_max | 0.9216 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 21.15 tokens
- max: 97 tokens
- min: 7 tokens
- mean: 20.2 tokens
- max: 61 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 공원에서 열리는 시장도 구경할 수 있었어요.
공원에서 시장을 볼 수 있었어요.
0.74
베네치아에서 2박 3일 일정으로 머물렀습니다.
저는 2박 3일 동안 베니스에 머물렀습니다.
0.74
메일로 홍보하는 학회 리스트 불러줘
보낸메일함의 메일은 주기적으로 백업하세요. 간헐적으로 하면 안됩니다.
0.12
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_max |
---|---|---|---|
0 | 0 | - | 0.9196 |
0.7610 | 500 | 0.024 | - |
1.0 | 657 | - | 0.9216 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.40.1
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}