jeonseonjin's picture
Add new SentenceTransformer model.
759963c verified
metadata
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
base_model: BAAI/bge-m3
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: 숙소가 기대했던  이상으로 좋았습니다.
    sentences:
      - 숙소가 생각보다 좋았어요.
      - 어떻게 해야 환풍기를 작동시킬  있어?
      - 우리  바로 옆에 슈퍼마켓이 있는데, 무엇보다도 조용해요.
  - source_sentence: 위치, 청결 상태, 주변 편의시설 모든게 좋았어요.
    sentences:
      - 집주인이 있기에  나라에서 잊을  없는 추억을 남겼습니다.
      -    모두에서 누우면 에펠탑이 보입니다!
      - 위치와 청결도 편의시설 크기 등등 모든게 좋습니다.
  - source_sentence: 인내심을 가지고 결실을 맺는다는 자세가 필요합니다.
    sentences:
      - >-
        같은 날, 바이오 산업은 정부에게 바이오 전문가 공급 시설, 새로운 시장 창출을 위한 규제 완화, 세금과 같은 인센티브 확대 등을
        제안했습니다.
      - 그런 점에서 매우 힘든 기간을 보내고 계십니다.
      - 접속 가능한 계정 네이트나 네이버 메일  하나만 알려줘
  - source_sentence: 비가 올지 맑을지 오늘 날씨를 찾아봐줄래?
    sentences:
      - 이번 태풍 진행 방향은?
      - 제가 지메일을   가입했는지 알려주실  있나요?
      - 할부지 덕분에 산타모니카에 있는 내내 행복했어요.
  - source_sentence: 티비 켜고 싶은데 말로 어떻게 명령해야하는  알려줘
    sentences:
      - 가습기 어떻게 써?
      - 친절한 설명으로 많은 도움이 되었습니다.
      - 에어컨과 뜨거운  모두 좋았습니다.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.9599773741282561
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9215829115320294
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9448530221078223
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.9182945172058137
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9451692315193281
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.9184981231098932
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9576506770371606
            name: Pearson Dot
          - type: spearman_dot
            value: 0.9159848293826075
            name: Spearman Dot
          - type: pearson_max
            value: 0.9599773741282561
            name: Pearson Max
          - type: spearman_max
            value: 0.9215829115320294
            name: Spearman Max

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jeonseonjin/embedding_BAAI-bge-m3")
# Run inference
sentences = [
    '티비 켜고 싶은데 말로 어떻게 명령해야하는 지 알려줘',
    '가습기 어떻게 써?',
    '친절한 설명으로 많은 도움이 되었습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.96
spearman_cosine 0.9216
pearson_manhattan 0.9449
spearman_manhattan 0.9183
pearson_euclidean 0.9452
spearman_euclidean 0.9185
pearson_dot 0.9577
spearman_dot 0.916
pearson_max 0.96
spearman_max 0.9216

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 7 tokens
    • mean: 21.15 tokens
    • max: 97 tokens
    • min: 7 tokens
    • mean: 20.2 tokens
    • max: 61 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    공원에서 열리는 시장도 구경할 수 있었어요. 공원에서 시장을 볼 수 있었어요. 0.74
    베네치아에서 2박 3일 일정으로 머물렀습니다. 저는 2박 3일 동안 베니스에 머물렀습니다. 0.74
    메일로 홍보하는 학회 리스트 불러줘 보낸메일함의 메일은 주기적으로 백업하세요. 간헐적으로 하면 안됩니다. 0.12
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_max
0 0 - 0.9196
0.7610 500 0.024 -
1.0 657 - 0.9216

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.40.1
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}