Commit
·
7ee5584
1
Parent(s):
df0d06b
Second try
Browse files- First lander.zip +2 -2
- First lander/data +21 -21
- First lander/policy.optimizer.pth +1 -1
- First lander/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
First lander.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59b98d32dd4cc57a9e99727f855cd99e648b471c239eb532ee27442ebb62cf74
|
3 |
+
size 147301
|
First lander/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
@@ -84,7 +84,7 @@
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f86a47c1670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86a47c1700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86a47c1790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86a47c1820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f86a47c18b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f86a47c1940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f86a47c19d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86a47c1a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f86a47c1af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86a47c1b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86a47c1c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86a47c1ca0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f86a5888c00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678530624088694229,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADADLo2pBm8Fs5ePpsIrzwxkHa92ECQPQAAgD8AAIA/M11IvHSqlry9Sq07HKOKPQuQUTw8FB+7AACAPwAAgD/aVNQ9FLKCukm5pLkKve43EOjBO45jJzgAAIA/AACAP5o22T3H3Zk+hT3Rvj0L1r7GDey73/mHvgAAAAAAAAAAZvqOO1wfKzmCTeY0GlmUMIod5juB1EC0AACAPwAAgD8mxSe+EdeOP16xo745DVK/BXiRvtHSlr0AAAAAAAAAAOYW+71i+Cs+8jefPkoqw75Q+Bk+P5IJPgAAAAAAAAAAzWimOx8Zxrv6uj0+2UMavh4YKrjBuoS/AACAPwAAgD8NHLi9kEuEP2NuVr69CDS/UH4yvrDKj7wAAAAAAAAAAGb+s7tmrSE/U5HQvRNHFr9faaK7RYXZvQAAAAAAAAAAxplUvvwhnD6uXs8+04IGvxxotr6K93Y+AAAAAAAAAACa+Zu6dicyvP6NaT2HvIO+16OCu57KkD0AAIA/AACAP+aVsL3/Z3I+q0pxPopx2L5mWwY9KOjqPQAAAAAAAAAAZoW8vCl4L7pd+JO4HBeQs6q/nTrvGLA3AACAPwAAgD9asrw9FIqburyGR7tNm402NBTmumYBZjoAAAAAAAAAAGbnlLxc00q6deqeO69GjDmdbw44srY+ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn67uWKzfckCUhpRSlIwBbJRLsYwBdJRHQK94j5RCQcR1fZQoaAZoCWgPQwhKm6p7ZOFwQJSGlFKUaBVLxGgWR0CveLneSB9UdX2UKGgGaAloD0MI4XzqWCWOckCUhpRSlGgVS61oFkdAr3j+pZOi4HV9lChoBmgJaA9DCDANw0cEtHJAlIaUUpRoFUvqaBZHQK95CPnSv1V1fZQoaAZoCWgPQwietkYEIxFzQJSGlFKUaBVLvWgWR0CveQuHN5dGdX2UKGgGaAloD0MIIXNlUC2oc0CUhpRSlGgVS75oFkdAr3kRHTZxrHV9lChoBmgJaA9DCO9XAb7b2nJAlIaUUpRoFUvQaBZHQK95E1JlJ6J1fZQoaAZoCWgPQwgibk4lQx5xQJSGlFKUaBVLrmgWR0CveTXAdn01dX2UKGgGaAloD0MIE0ceiOy3cUCUhpRSlGgVS9FoFkdAr3l+XokiU3V9lChoBmgJaA9DCOIEptP6xXFAlIaUUpRoFUuuaBZHQK95hCTlkpZ1fZQoaAZoCWgPQwhA3qtWJtBwQJSGlFKUaBVLw2gWR0CveZj+JgstdX2UKGgGaAloD0MI9N2tLBFCcECUhpRSlGgVS8JoFkdAr3oRMHryD3V9lChoBmgJaA9DCNffEoB/Pk1AlIaUUpRoFUt4aBZHQK96L2Rq46R1fZQoaAZoCWgPQwhmvoOfOKlwQJSGlFKUaBVLyWgWR0Cvel3eFcptdX2UKGgGaAloD0MIH2Yv286WcECUhpRSlGgVS71oFkdAr3paOcUdrHV9lChoBmgJaA9DCHQIHAk0J3FAlIaUUpRoFUu6aBZHQK96gattALR1fZQoaAZoCWgPQwi1cFmFzalxQJSGlFKUaBVL42gWR0CveowM6RyPdX2UKGgGaAloD0MIdAgcCTRpcECUhpRSlGgVS61oFkdAr3q6vcJtznV9lChoBmgJaA9DCGaGjbI+Q3NAlIaUUpRoFUu2aBZHQK96yQmu1Wt1fZQoaAZoCWgPQwgjn1c89WRyQJSGlFKUaBVLvWgWR0CvetChnJ1adX2UKGgGaAloD0MIVUs6ysHPckCUhpRSlGgVS8VoFkdAr3rxqynk1nV9lChoBmgJaA9DCEzBGmcT+XJAlIaUUpRoFU07AWgWR0Cve0zqbBoFdX2UKGgGaAloD0MIkjzX96GqckCUhpRSlGgVS9RoFkdAr3tPEfkmyHV9lChoBmgJaA9DCJT43An2wXFAlIaUUpRoFUu4aBZHQK97XbGm1pl1fZQoaAZoCWgPQwiMnlvoys9zQJSGlFKUaBVLxmgWR0Cve36DwpfAdX2UKGgGaAloD0MIk1LQ7aV5c0CUhpRSlGgVS+JoFkdAr5C2LpA2RHV9lChoBmgJaA9DCM8tdCWCZnFAlIaUUpRoFUu6aBZHQK+Q5qnm7rd1fZQoaAZoCWgPQwhnD7QCwwdyQJSGlFKUaBVLtmgWR0CvkQeGfwqidX2UKGgGaAloD0MI2Ls/3utIckCUhpRSlGgVS7loFkdAr5E17Uoa1nV9lChoBmgJaA9DCOkN95FbYHFAlIaUUpRoFUuraBZHQK+RYYplSTB1fZQoaAZoCWgPQwj4xhAA3O5zQJSGlFKUaBVL82gWR0CvkWGRvFWGdX2UKGgGaAloD0MIEk2giAU7cUCUhpRSlGgVS7BoFkdAr5Fn1Hvtt3V9lChoBmgJaA9DCLb0aKpn43BAlIaUUpRoFUu3aBZHQK+RbWWhRIl1fZQoaAZoCWgPQwhZaVIK+gBwQJSGlFKUaBVL3WgWR0CvkW0LUkOadX2UKGgGaAloD0MI2/y/6ohkcECUhpRSlGgVS89oFkdAr5F6pWFN+XV9lChoBmgJaA9DCGzRArRtlnFAlIaUUpRoFUu6aBZHQK+Rn544ZMt1fZQoaAZoCWgPQwjS+8bXXoNyQJSGlFKUaBVLrGgWR0Cvkfb7CSA6dX2UKGgGaAloD0MIaB8r+K05dECUhpRSlGgVS8BoFkdAr5H9n5BToHV9lChoBmgJaA9DCOepDrkZGnNAlIaUUpRoFUvJaBZHQK+SEg6ltTF1fZQoaAZoCWgPQwjcm98w0ZtzQJSGlFKUaBVLzmgWR0CvkizER8MNdX2UKGgGaAloD0MIGqVL/5IlckCUhpRSlGgVS7ZoFkdAr5Kjs2NvO3V9lChoBmgJaA9DCMB5ceKrbnFAlIaUUpRoFUvYaBZHQK+Sz1yvLYB1fZQoaAZoCWgPQwhaRuo9lR1xQJSGlFKUaBVLvWgWR0Cvkt94FA3UdX2UKGgGaAloD0MI4xsKn60dc0CUhpRSlGgVS65oFkdAr5MPIMjNZHV9lChoBmgJaA9DCNOgaB4AY3NAlIaUUpRoFUvQaBZHQK+TP9/BnBd1fZQoaAZoCWgPQwg9t9CVyGZzQJSGlFKUaBVLyGgWR0Cvk2lFc6eYdX2UKGgGaAloD0MIQgddwiGibkCUhpRSlGgVS89oFkdAr5Nw3HaN/HV9lChoBmgJaA9DCOW2fY/6kXJAlIaUUpRoFUvAaBZHQK+Tkz4UN8V1fZQoaAZoCWgPQwjcR25N+tFwQJSGlFKUaBVL2mgWR0Cvk5hXKbKBdX2UKGgGaAloD0MILUKxFfQgckCUhpRSlGgVS9loFkdAr5Okq8UVSHV9lChoBmgJaA9DCD1jX7JxHHJAlIaUUpRoFUusaBZHQK+Tv3qzJIV1fZQoaAZoCWgPQwjKh6Bq9NRyQJSGlFKUaBVL7GgWR0Cvk8CYkVvddX2UKGgGaAloD0MIWMnH7kLscUCUhpRSlGgVS65oFkdAr5P5SzgMt3V9lChoBmgJaA9DCLFs5pBU025AlIaUUpRoFUvHaBZHQK+UHDfm9xp1fZQoaAZoCWgPQwg3p5IBoOI7QJSGlFKUaBVLYGgWR0CvlFrqMWGidX2UKGgGaAloD0MIlZ7pJUa3ZkCUhpRSlGgVTegDaBZHQK+UihqTKT11fZQoaAZoCWgPQwjSVbq7zo9xQJSGlFKUaBVL2GgWR0CvlOM5GSZCdX2UKGgGaAloD0MIb/Wc9L5ibkCUhpRSlGgVS85oFkdAr5Tvmq5sj3V9lChoBmgJaA9DCOgTeZK0JHFAlIaUUpRoFUu5aBZHQK+U9z8P4Eh1fZQoaAZoCWgPQwhyNbIrrepvQJSGlFKUaBVL12gWR0CvlRN7SiM6dX2UKGgGaAloD0MIGvz9YnZ7ckCUhpRSlGgVS8poFkdAr5VMK9f1H3V9lChoBmgJaA9DCKsGYW43uHFAlIaUUpRoFUu9aBZHQK+VUaWHDaZ1fZQoaAZoCWgPQwhgOUIGsiNwQJSGlFKUaBVLumgWR0CvlXj7IkqudX2UKGgGaAloD0MIm5FB7iKDckCUhpRSlGgVS8FoFkdAr5V5SFXaJ3V9lChoBmgJaA9DCCyazk4GfnFAlIaUUpRoFUvKaBZHQK+Vu508vEl1fZQoaAZoCWgPQwgOvjCZahdwQJSGlFKUaBVL0WgWR0Cvlc4DTz/ZdX2UKGgGaAloD0MI4Xmp2FiDckCUhpRSlGgVS8BoFkdAr5Xfs9jgAXV9lChoBmgJaA9DCJ8CYDzDV3RAlIaUUpRoFUvraBZHQK+V5mZE2Hd1fZQoaAZoCWgPQwieQxmqYoxxQJSGlFKUaBVLuWgWR0CvlfANgBtDdX2UKGgGaAloD0MIi/87ooJ6c0CUhpRSlGgVS85oFkdAr5aGBBiTdXV9lChoBmgJaA9DCLMIxVZQgnFAlIaUUpRoFUvJaBZHQK+W5gKF7D51fZQoaAZoCWgPQwiWBn5UQ05zQJSGlFKUaBVLvmgWR0CvlvAXuVopdX2UKGgGaAloD0MIpGyRtJv0ckCUhpRSlGgVS9ZoFkdAr5b9QEZBLXV9lChoBmgJaA9DCEop6PYSMHJAlIaUUpRoFUu0aBZHQK+XGNtqHoJ1fZQoaAZoCWgPQwijWkQU0zNxQJSGlFKUaBVLvGgWR0Cvlyi4jKPodX2UKGgGaAloD0MIDhE3p5LFTUCUhpRSlGgVS5BoFkdAr5dS1Cw8n3V9lChoBmgJaA9DCIkLQKO0DXFAlIaUUpRoFUvzaBZHQK+XXBKL8791fZQoaAZoCWgPQwjZsnxdBoxtQJSGlFKUaBVLymgWR0Cvl3ywwCbMdX2UKGgGaAloD0MIO1RTknWxc0CUhpRSlGgVS9JoFkdAr5ePYHxBmnV9lChoBmgJaA9DCIdu9geKKnNAlIaUUpRoFUvTaBZHQK+X05tFa0R1fZQoaAZoCWgPQwgNwXEZ95pwQJSGlFKUaBVLzWgWR0Cvl++E7GNrdX2UKGgGaAloD0MI5gKXx5q9cUCUhpRSlGgVS99oFkdAr5gpBgNPQHV9lChoBmgJaA9DCDcZVYbx0GxAlIaUUpRoFU2EAWgWR0CvmDQNkOI7dX2UKGgGaAloD0MIQIaOHZQPc0CUhpRSlGgVS/NoFkdAr5g5Av+OwXV9lChoBmgJaA9DCA8J3/ubJXJAlIaUUpRoFUu1aBZHQK+YXXe3x4J1fZQoaAZoCWgPQwhBtixf15xxQJSGlFKUaBVLoGgWR0CvmI9tMwlCdX2UKGgGaAloD0MIbW+3JAfObkCUhpRSlGgVS9poFkdAr5kTfxc3VHV9lChoBmgJaA9DCDwUBfoEvHFAlIaUUpRoFUvLaBZHQK+ZHst03fh1fZQoaAZoCWgPQwikpfJ2BAV0QJSGlFKUaBVL6mgWR0CvmUgiml67dX2UKGgGaAloD0MIDRzQ0pX9cUCUhpRSlGgVS9VoFkdAr5lKd8RcvHV9lChoBmgJaA9DCLPsSWDz0HBAlIaUUpRoFUvTaBZHQK+ZcbjLjgh1fZQoaAZoCWgPQwhD4bN1cDNyQJSGlFKUaBVL0mgWR0CvmXhisny/dX2UKGgGaAloD0MIMnctId8bc0CUhpRSlGgVS9RoFkdAr5mdQhwEQ3V9lChoBmgJaA9DCHfZrzvd5nBAlIaUUpRoFUvWaBZHQK+ZtbsWweN1fZQoaAZoCWgPQwjPukbLARNwQJSGlFKUaBVLwGgWR0Cvmd2nsLOSdX2UKGgGaAloD0MI2ZjXEcfGcECUhpRSlGgVS7RoFkdAr5oFWyTpxHV9lChoBmgJaA9DCIza/SrAi3JAlIaUUpRoFUvmaBZHQK+aH5dnkDJ1fZQoaAZoCWgPQwj9oC5SqIVxQJSGlFKUaBVLy2gWR0Cvmi5UT+NtdX2UKGgGaAloD0MIMzffiG7ncUCUhpRSlGgVS85oFkdAr5ppJmNBGHV9lChoBmgJaA9DCPMhqBp9KXRAlIaUUpRoFUvsaBZHQK+airfcesB1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 984,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
First lander/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c077e4ceeb4445fa52be7f6bd661a0ac029fb10c86f7f453b4b077c14bc78138
|
3 |
size 87929
|
First lander/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb1323ee30d187eef3a5c26925110ee2a0afdbfa80899b22e7fce74db059a427
|
3 |
size 43393
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.52 +/- 13.84
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77cc7a75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77cc7a7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77cc7a7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77cc7a7790>", "_build": "<function ActorCriticPolicy._build at 0x7f77cc7a7820>", "forward": "<function ActorCriticPolicy.forward at 0x7f77cc7a78b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f77cc7a7940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77cc7a79d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77cc7a7a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77cc7a7af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77cc7a7b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77cc7a7c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f77cc7a8900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678524100706835376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBoOT7FFKs/+2x2PgyZoL7FbQw+KToBPgAAAAAAAAAAzbJ+vme4QT4h6qQ+joKIvoOC2rxy5Mk9AAAAAAAAAACa0Hy+0ndyPpbNhT4XIVi+I7/SPN3F3TwAAAAAAAAAAAAOnD3HOKw/8aM3P+Qq0r7Fxnu8vH0ePgAAAAAAAAAADYlwvvf7Kz7aAYg+XiWZvkhAJD3LItA7AAAAAAAAAABVZaG+WL2mPy0Z0b4DBKG+6KulvltGa70AAAAAAAAAAO1MSD4O9vI+DNeRvrynb77P6ZO8QR8xvQAAAAAAAAAAM+rvPFzHTbolbsq3CUMfs+SKKTti2eY2AACAPwAAgD8afw29AXmDPQIoCb4RxFi+eSSJvT7flr0AAAAAAAAAAM0aeL2M8hc+b+8ivpkjbb5+x3a9GKTPOwAAAAAAAAAAmhEAvRzpdj3TQuu8/xcxvlw4qrzmv4I9AAAAAAAAAAAABls8BCWEPT78Xb75WT2+mNQSvfYDgDwAAAAAAAAAAPP9nb32HCm6QBNtueCYYLTFBea4C7CMOAAAgD8AAIA/2poAvi/maT/POAu8yU2ZvjW6gr2b3X+9AAAAAAAAAAAzQXG8gL62PzMhPb91K7g+33l1PE8QAz4AAAAAAAAAADo1mb7y0IS9J55IveN7Hj2hHOI+0OvQvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5j3ONOFockCUhpRSlIwBbJRNHQGMAXSUR0CaCnfyf+S9dX2UKGgGaAloD0MI3IR7ZZ4ccECUhpRSlGgVTSUBaBZHQJoLF1aGHpN1fZQoaAZoCWgPQwhxOV6B6AhxQJSGlFKUaBVNUAFoFkdAmgt0SZjQRnV9lChoBmgJaA9DCD0oKEUrq29AlIaUUpRoFU2EAWgWR0CaDc67NB4VdX2UKGgGaAloD0MIMEYkCq2AcECUhpRSlGgVTV4BaBZHQJoOJKVY6n11fZQoaAZoCWgPQwhm3NRAc7NsQJSGlFKUaBVNQQJoFkdAmg5Nzr/sFHV9lChoBmgJaA9DCBtMw/ARNXJAlIaUUpRoFU1tAWgWR0CaD3q3mV7hdX2UKGgGaAloD0MIQPm7d9SVbUCUhpRSlGgVTUoBaBZHQJoR4FbFCLN1fZQoaAZoCWgPQwi+v0F7dftuQJSGlFKUaBVNIgFoFkdAmhK8I/qxDHV9lChoBmgJaA9DCNmvO9153XBAlIaUUpRoFU0zAWgWR0CaKZsk6cRUdX2UKGgGaAloD0MI7DTSUjmuckCUhpRSlGgVTUgBaBZHQJop2rIYFaB1fZQoaAZoCWgPQwgRN6eSAaJxQJSGlFKUaBVNLAFoFkdAmir0Fjd56nV9lChoBmgJaA9DCGYtBaQ9ynJAlIaUUpRoFU1XAWgWR0CaLDZDiOvMdX2UKGgGaAloD0MIeQH20akocUCUhpRSlGgVTSwBaBZHQJos7p8neBR1fZQoaAZoCWgPQwi2nbZGxFxxQJSGlFKUaBVN0gFoFkdAmiztS/CZW3V9lChoBmgJaA9DCD24O2t3JHFAlIaUUpRoFU2RAWgWR0CaLgDArQPadX2UKGgGaAloD0MI7wOQ2gSacUCUhpRSlGgVTVsBaBZHQJouJDKHO8l1fZQoaAZoCWgPQwivXG+baatyQJSGlFKUaBVNkgFoFkdAmi9pRbbDdnV9lChoBmgJaA9DCKon848+H3JAlIaUUpRoFU1MAWgWR0CaMDI4EOiGdX2UKGgGaAloD0MIKqvpeiLbbUCUhpRSlGgVTYgBaBZHQJoyltQ9A5d1fZQoaAZoCWgPQwgIH0q0ZOdtQJSGlFKUaBVNPQFoFkdAmjMN7ngYQHV9lChoBmgJaA9DCGtJRzkYY3BAlIaUUpRoFU0iAWgWR0CaM8Tot+TedX2UKGgGaAloD0MIcJaS5aQzckCUhpRSlGgVTbwBaBZHQJo1tRqGlAN1fZQoaAZoCWgPQwhI3GPpQ8pyQJSGlFKUaBVN8wFoFkdAmjYh9Tgl4XV9lChoBmgJaA9DCDwTmiTWH3FAlIaUUpRoFU1dAWgWR0CaNkR2r4nGdX2UKGgGaAloD0MI4gZ8fhipUECUhpRSlGgVTRUBaBZHQJo23aPCEYh1fZQoaAZoCWgPQwhV2XdFcFxuQJSGlFKUaBVNGQFoFkdAmjhNaUzKtHV9lChoBmgJaA9DCPnX8sr1+XBAlIaUUpRoFU1PAWgWR0CaOFtiQT24dX2UKGgGaAloD0MIsfm4NtQPcECUhpRSlGgVTbwBaBZHQJo4dUcXFcZ1fZQoaAZoCWgPQwiC/kKPmJFwQJSGlFKUaBVNcQFoFkdAmjoaeK8+R3V9lChoBmgJaA9DCH+jHTf8fG5AlIaUUpRoFU2MAWgWR0CaPH5BTn7pdX2UKGgGaAloD0MIVACMZ9BnbkCUhpRSlGgVTWwBaBZHQJo8v4Glhw51fZQoaAZoCWgPQwiQ9j/A2p5tQJSGlFKUaBVNawFoFkdAmj1zG5tm+XV9lChoBmgJaA9DCJiIt86/UnFAlIaUUpRoFU0MAmgWR0CaPa52Qnx8dX2UKGgGaAloD0MIEoPAymHxcUCUhpRSlGgVTVYBaBZHQJo+1L0z0pV1fZQoaAZoCWgPQwiq8Gd489xyQJSGlFKUaBVNQwFoFkdAmj84AbQ1JnV9lChoBmgJaA9DCDWXGwx1N3FAlIaUUpRoFU0pAWgWR0CaQCUgSvkjdX2UKGgGaAloD0MI7upVZPSNb0CUhpRSlGgVTTgBaBZHQJpBCNAC4jN1fZQoaAZoCWgPQwg0oUliyYtyQJSGlFKUaBVNOAFoFkdAmkEnrY5DJHV9lChoBmgJaA9DCC3Q7pCiFnJAlIaUUpRoFU0uAWgWR0CaQVR0EHMVdX2UKGgGaAloD0MIYCFzZdCocUCUhpRSlGgVTZ0BaBZHQJpBnaTOgQJ1fZQoaAZoCWgPQwicwkoFFaNRQJSGlFKUaBVN6ANoFkdAmkSWzru6VnV9lChoBmgJaA9DCJW6ZByjfm1AlIaUUpRoFU1vAWgWR0CaRS3Dej20dX2UKGgGaAloD0MIqJAr9ex/cECUhpRSlGgVTXQBaBZHQJpFdtO2y9p1fZQoaAZoCWgPQwiEoKNVLShvQJSGlFKUaBVNQgFoFkdAmkWW7Wd3CHV9lChoBmgJaA9DCBB39SoyzEhAlIaUUpRoFU0BAWgWR0CaReCTEBKddX2UKGgGaAloD0MICoFc4sgTbECUhpRSlGgVTRIBaBZHQJpHhy+6Ae91fZQoaAZoCWgPQwiXqN4amFpwQJSGlFKUaBVNPwFoFkdAmkheJ1q33HV9lChoBmgJaA9DCI2bGmg+D2xAlIaUUpRoFU3DAWgWR0CaSSJK8L8adX2UKGgGaAloD0MIhBJm2n6Wb0CUhpRSlGgVTUABaBZHQJpJ7Llmvnt1fZQoaAZoCWgPQwh3hqktdYJwQJSGlFKUaBVNTgFoFkdAmk0y/wiJO3V9lChoBmgJaA9DCLX9KyuNdXBAlIaUUpRoFU1jAWgWR0CaTbBP9DQadX2UKGgGaAloD0MIYp0q3/NeckCUhpRSlGgVTTMBaBZHQJpOrq4YrJ91fZQoaAZoCWgPQwineccpuplwQJSGlFKUaBVNQwFoFkdAmk9J9/jKgnV9lChoBmgJaA9DCBQhdTt79nBAlIaUUpRoFU1nAWgWR0CabLqoIfKZdX2UKGgGaAloD0MImRJJ9DJSbECUhpRSlGgVTYoBaBZHQJpuSs2eg+R1fZQoaAZoCWgPQwi7tOGwtBNyQJSGlFKUaBVNtwFoFkdAmm5QCOmzjXV9lChoBmgJaA9DCDeMguBxDHFAlIaUUpRoFU1BAWgWR0Cab1JF9a2XdX2UKGgGaAloD0MIIJxPHeszcECUhpRSlGgVTVQBaBZHQJpvqbNKRMh1fZQoaAZoCWgPQwi4dqIk5PJxQJSGlFKUaBVNZAFoFkdAmm/PXGwRoXV9lChoBmgJaA9DCO8CJQVWDHJAlIaUUpRoFU0YAWgWR0CacAVghKUWdX2UKGgGaAloD0MIXpz4akfMcUCUhpRSlGgVTSMBaBZHQJpw3bUPQOZ1fZQoaAZoCWgPQwgHYAMihElwQJSGlFKUaBVNSQFoFkdAmnD9u5z5oHV9lChoBmgJaA9DCHR63o3FlnBAlIaUUpRoFU2AAWgWR0CacS5lOGj9dX2UKGgGaAloD0MIgXhdv2B2cECUhpRSlGgVTaYBaBZHQJpyg1uR9w51fZQoaAZoCWgPQwhsBOJ1/b5rQJSGlFKUaBVNZQFoFkdAmnM53gUDdXV9lChoBmgJaA9DCL/VOnG5snBAlIaUUpRoFU0pAWgWR0Cac4KDTSb6dX2UKGgGaAloD0MICYhJuJAFcUCUhpRSlGgVTSABaBZHQJp0JwbVBld1fZQoaAZoCWgPQwgLDcSymdxQQJSGlFKUaBVL+mgWR0CadFkSVW0adX2UKGgGaAloD0MIn3b4a7IbcECUhpRSlGgVTVYBaBZHQJp1Tq8lHBl1fZQoaAZoCWgPQwjU1ohgXJZxQJSGlFKUaBVNQAFoFkdAmngHJxNqQHV9lChoBmgJaA9DCB+A1CZOsmxAlIaUUpRoFU0cAWgWR0CaeCVoYekpdX2UKGgGaAloD0MIorYNo2BYcECUhpRSlGgVTdABaBZHQJp4fKSxJNF1fZQoaAZoCWgPQwjVyoRfat5tQJSGlFKUaBVNNwFoFkdAmnksImgJ1XV9lChoBmgJaA9DCDiHa7WH90FAlIaUUpRoFUvXaBZHQJp6Xs2NvO11fZQoaAZoCWgPQwiWkuUklC1vQJSGlFKUaBVNOQFoFkdAmnpxFI/Z/XV9lChoBmgJaA9DCHNoke28N3FAlIaUUpRoFU1xAWgWR0Caeq7N0NjLdX2UKGgGaAloD0MI68a7I+NKckCUhpRSlGgVTWEBaBZHQJp61U1hsqJ1fZQoaAZoCWgPQwjHZHH/UaBxQJSGlFKUaBVNbwFoFkdAmnwoChew93V9lChoBmgJaA9DCJEOD2F8EnFAlIaUUpRoFU1rAWgWR0CafD8IAwPAdX2UKGgGaAloD0MIoMVSJF+abECUhpRSlGgVTT0BaBZHQJp9A2XLNfR1fZQoaAZoCWgPQwg/jBAe7ehyQJSGlFKUaBVNWwFoFkdAmn0fSDyvtHV9lChoBmgJaA9DCDmAft8/CG9AlIaUUpRoFU1gAWgWR0CafvdSEUTMdX2UKGgGaAloD0MIby2T4fhWb0CUhpRSlGgVTVsBaBZHQJqAJIczZYh1fZQoaAZoCWgPQwhbCd0l8UpuQJSGlFKUaBVNTwJoFkdAmoBFnAZbZHV9lChoBmgJaA9DCNTuVwG+s0pAlIaUUpRoFU0UAWgWR0CagIKU3XI2dX2UKGgGaAloD0MICJEMOTazcUCUhpRSlGgVTUoBaBZHQJqCJ2aDwph1fZQoaAZoCWgPQwhuTiUDgJRyQJSGlFKUaBVNJwFoFkdAmoO7WEsasXV9lChoBmgJaA9DCI9uhEVFGm1AlIaUUpRoFU1XAWgWR0Cag+Kh+OOsdX2UKGgGaAloD0MIVp3VAjtGcECUhpRSlGgVTUUBaBZHQJqFDzundft1fZQoaAZoCWgPQwhLICV2rQhxQJSGlFKUaBVNEQJoFkdAmoVCTdLxqnV9lChoBmgJaA9DCMZNDTRfwnBAlIaUUpRoFU1sAWgWR0CahlduYQardX2UKGgGaAloD0MIZRu4A3VFcECUhpRSlGgVTRsBaBZHQJqHAN2C/XZ1fZQoaAZoCWgPQwgCLsiW5cxvQJSGlFKUaBVNgQFoFkdAmodZj2BatHV9lChoBmgJaA9DCNuIJ7tZuHBAlIaUUpRoFU0oAWgWR0Cah3Dr7fpEdX2UKGgGaAloD0MIPEuQEdD7a0CUhpRSlGgVTScBaBZHQJqKY2zfJmx1fZQoaAZoCWgPQwirJLIP8l9xQJSGlFKUaBVNtQFoFkdAmox/dVNpNHV9lChoBmgJaA9DCPA0mfG2/XBAlIaUUpRoFU0uAWgWR0CajKZkTYdydX2UKGgGaAloD0MIa2EW2nkMcECUhpRSlGgVTVoBaBZHQJqOsRTS9dx1fZQoaAZoCWgPQwjWpxyTha5yQJSGlFKUaBVNVQFoFkdAmo8gGOdXk3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86a47c1670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86a47c1700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86a47c1790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86a47c1820>", "_build": "<function ActorCriticPolicy._build at 0x7f86a47c18b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f86a47c1940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f86a47c19d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86a47c1a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86a47c1af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86a47c1b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86a47c1c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86a47c1ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f86a5888c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678530624088694229, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADADLo2pBm8Fs5ePpsIrzwxkHa92ECQPQAAgD8AAIA/M11IvHSqlry9Sq07HKOKPQuQUTw8FB+7AACAPwAAgD/aVNQ9FLKCukm5pLkKve43EOjBO45jJzgAAIA/AACAP5o22T3H3Zk+hT3Rvj0L1r7GDey73/mHvgAAAAAAAAAAZvqOO1wfKzmCTeY0GlmUMIod5juB1EC0AACAPwAAgD8mxSe+EdeOP16xo745DVK/BXiRvtHSlr0AAAAAAAAAAOYW+71i+Cs+8jefPkoqw75Q+Bk+P5IJPgAAAAAAAAAAzWimOx8Zxrv6uj0+2UMavh4YKrjBuoS/AACAPwAAgD8NHLi9kEuEP2NuVr69CDS/UH4yvrDKj7wAAAAAAAAAAGb+s7tmrSE/U5HQvRNHFr9faaK7RYXZvQAAAAAAAAAAxplUvvwhnD6uXs8+04IGvxxotr6K93Y+AAAAAAAAAACa+Zu6dicyvP6NaT2HvIO+16OCu57KkD0AAIA/AACAP+aVsL3/Z3I+q0pxPopx2L5mWwY9KOjqPQAAAAAAAAAAZoW8vCl4L7pd+JO4HBeQs6q/nTrvGLA3AACAPwAAgD9asrw9FIqburyGR7tNm402NBTmumYBZjoAAAAAAAAAAGbnlLxc00q6deqeO69GjDmdbw44srY+ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn67uWKzfckCUhpRSlIwBbJRLsYwBdJRHQK94j5RCQcR1fZQoaAZoCWgPQwhKm6p7ZOFwQJSGlFKUaBVLxGgWR0CveLneSB9UdX2UKGgGaAloD0MI4XzqWCWOckCUhpRSlGgVS61oFkdAr3j+pZOi4HV9lChoBmgJaA9DCDANw0cEtHJAlIaUUpRoFUvqaBZHQK95CPnSv1V1fZQoaAZoCWgPQwietkYEIxFzQJSGlFKUaBVLvWgWR0CveQuHN5dGdX2UKGgGaAloD0MIIXNlUC2oc0CUhpRSlGgVS75oFkdAr3kRHTZxrHV9lChoBmgJaA9DCO9XAb7b2nJAlIaUUpRoFUvQaBZHQK95E1JlJ6J1fZQoaAZoCWgPQwgibk4lQx5xQJSGlFKUaBVLrmgWR0CveTXAdn01dX2UKGgGaAloD0MIE0ceiOy3cUCUhpRSlGgVS9FoFkdAr3l+XokiU3V9lChoBmgJaA9DCOIEptP6xXFAlIaUUpRoFUuuaBZHQK95hCTlkpZ1fZQoaAZoCWgPQwhA3qtWJtBwQJSGlFKUaBVLw2gWR0CveZj+JgstdX2UKGgGaAloD0MI9N2tLBFCcECUhpRSlGgVS8JoFkdAr3oRMHryD3V9lChoBmgJaA9DCNffEoB/Pk1AlIaUUpRoFUt4aBZHQK96L2Rq46R1fZQoaAZoCWgPQwhmvoOfOKlwQJSGlFKUaBVLyWgWR0Cvel3eFcptdX2UKGgGaAloD0MIH2Yv286WcECUhpRSlGgVS71oFkdAr3paOcUdrHV9lChoBmgJaA9DCHQIHAk0J3FAlIaUUpRoFUu6aBZHQK96gattALR1fZQoaAZoCWgPQwi1cFmFzalxQJSGlFKUaBVL42gWR0CveowM6RyPdX2UKGgGaAloD0MIdAgcCTRpcECUhpRSlGgVS61oFkdAr3q6vcJtznV9lChoBmgJaA9DCGaGjbI+Q3NAlIaUUpRoFUu2aBZHQK96yQmu1Wt1fZQoaAZoCWgPQwgjn1c89WRyQJSGlFKUaBVLvWgWR0CvetChnJ1adX2UKGgGaAloD0MIVUs6ysHPckCUhpRSlGgVS8VoFkdAr3rxqynk1nV9lChoBmgJaA9DCEzBGmcT+XJAlIaUUpRoFU07AWgWR0Cve0zqbBoFdX2UKGgGaAloD0MIkjzX96GqckCUhpRSlGgVS9RoFkdAr3tPEfkmyHV9lChoBmgJaA9DCJT43An2wXFAlIaUUpRoFUu4aBZHQK97XbGm1pl1fZQoaAZoCWgPQwiMnlvoys9zQJSGlFKUaBVLxmgWR0Cve36DwpfAdX2UKGgGaAloD0MIk1LQ7aV5c0CUhpRSlGgVS+JoFkdAr5C2LpA2RHV9lChoBmgJaA9DCM8tdCWCZnFAlIaUUpRoFUu6aBZHQK+Q5qnm7rd1fZQoaAZoCWgPQwhnD7QCwwdyQJSGlFKUaBVLtmgWR0CvkQeGfwqidX2UKGgGaAloD0MI2Ls/3utIckCUhpRSlGgVS7loFkdAr5E17Uoa1nV9lChoBmgJaA9DCOkN95FbYHFAlIaUUpRoFUuraBZHQK+RYYplSTB1fZQoaAZoCWgPQwj4xhAA3O5zQJSGlFKUaBVL82gWR0CvkWGRvFWGdX2UKGgGaAloD0MIEk2giAU7cUCUhpRSlGgVS7BoFkdAr5Fn1Hvtt3V9lChoBmgJaA9DCLb0aKpn43BAlIaUUpRoFUu3aBZHQK+RbWWhRIl1fZQoaAZoCWgPQwhZaVIK+gBwQJSGlFKUaBVL3WgWR0CvkW0LUkOadX2UKGgGaAloD0MI2/y/6ohkcECUhpRSlGgVS89oFkdAr5F6pWFN+XV9lChoBmgJaA9DCGzRArRtlnFAlIaUUpRoFUu6aBZHQK+Rn544ZMt1fZQoaAZoCWgPQwjS+8bXXoNyQJSGlFKUaBVLrGgWR0Cvkfb7CSA6dX2UKGgGaAloD0MIaB8r+K05dECUhpRSlGgVS8BoFkdAr5H9n5BToHV9lChoBmgJaA9DCOepDrkZGnNAlIaUUpRoFUvJaBZHQK+SEg6ltTF1fZQoaAZoCWgPQwjcm98w0ZtzQJSGlFKUaBVLzmgWR0CvkizER8MNdX2UKGgGaAloD0MIGqVL/5IlckCUhpRSlGgVS7ZoFkdAr5Kjs2NvO3V9lChoBmgJaA9DCMB5ceKrbnFAlIaUUpRoFUvYaBZHQK+Sz1yvLYB1fZQoaAZoCWgPQwhaRuo9lR1xQJSGlFKUaBVLvWgWR0Cvkt94FA3UdX2UKGgGaAloD0MI4xsKn60dc0CUhpRSlGgVS65oFkdAr5MPIMjNZHV9lChoBmgJaA9DCNOgaB4AY3NAlIaUUpRoFUvQaBZHQK+TP9/BnBd1fZQoaAZoCWgPQwg9t9CVyGZzQJSGlFKUaBVLyGgWR0Cvk2lFc6eYdX2UKGgGaAloD0MIQgddwiGibkCUhpRSlGgVS89oFkdAr5Nw3HaN/HV9lChoBmgJaA9DCOW2fY/6kXJAlIaUUpRoFUvAaBZHQK+Tkz4UN8V1fZQoaAZoCWgPQwjcR25N+tFwQJSGlFKUaBVL2mgWR0Cvk5hXKbKBdX2UKGgGaAloD0MILUKxFfQgckCUhpRSlGgVS9loFkdAr5Okq8UVSHV9lChoBmgJaA9DCD1jX7JxHHJAlIaUUpRoFUusaBZHQK+Tv3qzJIV1fZQoaAZoCWgPQwjKh6Bq9NRyQJSGlFKUaBVL7GgWR0Cvk8CYkVvddX2UKGgGaAloD0MIWMnH7kLscUCUhpRSlGgVS65oFkdAr5P5SzgMt3V9lChoBmgJaA9DCLFs5pBU025AlIaUUpRoFUvHaBZHQK+UHDfm9xp1fZQoaAZoCWgPQwg3p5IBoOI7QJSGlFKUaBVLYGgWR0CvlFrqMWGidX2UKGgGaAloD0MIlZ7pJUa3ZkCUhpRSlGgVTegDaBZHQK+UihqTKT11fZQoaAZoCWgPQwjSVbq7zo9xQJSGlFKUaBVL2GgWR0CvlOM5GSZCdX2UKGgGaAloD0MIb/Wc9L5ibkCUhpRSlGgVS85oFkdAr5Tvmq5sj3V9lChoBmgJaA9DCOgTeZK0JHFAlIaUUpRoFUu5aBZHQK+U9z8P4Eh1fZQoaAZoCWgPQwhyNbIrrepvQJSGlFKUaBVL12gWR0CvlRN7SiM6dX2UKGgGaAloD0MIGvz9YnZ7ckCUhpRSlGgVS8poFkdAr5VMK9f1H3V9lChoBmgJaA9DCKsGYW43uHFAlIaUUpRoFUu9aBZHQK+VUaWHDaZ1fZQoaAZoCWgPQwhgOUIGsiNwQJSGlFKUaBVLumgWR0CvlXj7IkqudX2UKGgGaAloD0MIm5FB7iKDckCUhpRSlGgVS8FoFkdAr5V5SFXaJ3V9lChoBmgJaA9DCCyazk4GfnFAlIaUUpRoFUvKaBZHQK+Vu508vEl1fZQoaAZoCWgPQwgOvjCZahdwQJSGlFKUaBVL0WgWR0Cvlc4DTz/ZdX2UKGgGaAloD0MI4Xmp2FiDckCUhpRSlGgVS8BoFkdAr5Xfs9jgAXV9lChoBmgJaA9DCJ8CYDzDV3RAlIaUUpRoFUvraBZHQK+V5mZE2Hd1fZQoaAZoCWgPQwieQxmqYoxxQJSGlFKUaBVLuWgWR0CvlfANgBtDdX2UKGgGaAloD0MIi/87ooJ6c0CUhpRSlGgVS85oFkdAr5aGBBiTdXV9lChoBmgJaA9DCLMIxVZQgnFAlIaUUpRoFUvJaBZHQK+W5gKF7D51fZQoaAZoCWgPQwiWBn5UQ05zQJSGlFKUaBVLvmgWR0CvlvAXuVopdX2UKGgGaAloD0MIpGyRtJv0ckCUhpRSlGgVS9ZoFkdAr5b9QEZBLXV9lChoBmgJaA9DCEop6PYSMHJAlIaUUpRoFUu0aBZHQK+XGNtqHoJ1fZQoaAZoCWgPQwijWkQU0zNxQJSGlFKUaBVLvGgWR0Cvlyi4jKPodX2UKGgGaAloD0MIDhE3p5LFTUCUhpRSlGgVS5BoFkdAr5dS1Cw8n3V9lChoBmgJaA9DCIkLQKO0DXFAlIaUUpRoFUvzaBZHQK+XXBKL8791fZQoaAZoCWgPQwjZsnxdBoxtQJSGlFKUaBVLymgWR0Cvl3ywwCbMdX2UKGgGaAloD0MIO1RTknWxc0CUhpRSlGgVS9JoFkdAr5ePYHxBmnV9lChoBmgJaA9DCIdu9geKKnNAlIaUUpRoFUvTaBZHQK+X05tFa0R1fZQoaAZoCWgPQwgNwXEZ95pwQJSGlFKUaBVLzWgWR0Cvl++E7GNrdX2UKGgGaAloD0MI5gKXx5q9cUCUhpRSlGgVS99oFkdAr5gpBgNPQHV9lChoBmgJaA9DCDcZVYbx0GxAlIaUUpRoFU2EAWgWR0CvmDQNkOI7dX2UKGgGaAloD0MIQIaOHZQPc0CUhpRSlGgVS/NoFkdAr5g5Av+OwXV9lChoBmgJaA9DCA8J3/ubJXJAlIaUUpRoFUu1aBZHQK+YXXe3x4J1fZQoaAZoCWgPQwhBtixf15xxQJSGlFKUaBVLoGgWR0CvmI9tMwlCdX2UKGgGaAloD0MIbW+3JAfObkCUhpRSlGgVS9poFkdAr5kTfxc3VHV9lChoBmgJaA9DCDwUBfoEvHFAlIaUUpRoFUvLaBZHQK+ZHst03fh1fZQoaAZoCWgPQwikpfJ2BAV0QJSGlFKUaBVL6mgWR0CvmUgiml67dX2UKGgGaAloD0MIDRzQ0pX9cUCUhpRSlGgVS9VoFkdAr5lKd8RcvHV9lChoBmgJaA9DCLPsSWDz0HBAlIaUUpRoFUvTaBZHQK+ZcbjLjgh1fZQoaAZoCWgPQwhD4bN1cDNyQJSGlFKUaBVL0mgWR0CvmXhisny/dX2UKGgGaAloD0MIMnctId8bc0CUhpRSlGgVS9RoFkdAr5mdQhwEQ3V9lChoBmgJaA9DCHfZrzvd5nBAlIaUUpRoFUvWaBZHQK+ZtbsWweN1fZQoaAZoCWgPQwjPukbLARNwQJSGlFKUaBVLwGgWR0Cvmd2nsLOSdX2UKGgGaAloD0MI2ZjXEcfGcECUhpRSlGgVS7RoFkdAr5oFWyTpxHV9lChoBmgJaA9DCIza/SrAi3JAlIaUUpRoFUvmaBZHQK+aH5dnkDJ1fZQoaAZoCWgPQwj9oC5SqIVxQJSGlFKUaBVLy2gWR0Cvmi5UT+NtdX2UKGgGaAloD0MIMzffiG7ncUCUhpRSlGgVS85oFkdAr5ppJmNBGHV9lChoBmgJaA9DCPMhqBp9KXRAlIaUUpRoFUvsaBZHQK+airfcesB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.5233937903125, "std_reward": 13.841829386213787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T11:14:16.549805"}
|