Model description
This is a Support Vector Classifier
model trained on JeVeuxAider dataset. As input, the model takes text embeddings encoded with camembert-base (768 tokens)
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('columntransformer', ColumnTransformer(transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=563))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8', 'avg_9', 'avg_10', ... 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764', 'max_765', 'max_766', 'max_767', 'max_768'], dtype='object', length=2304))], verbose_feature_names_out=False)), ('svc', SVC(probability=True, random_state=42))] |
verbose | False |
columntransformer | ColumnTransformer(transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=563))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8', 'avg_9', 'avg_10', ... 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764', 'max_765', 'max_766', 'max_767', 'max_768'], dtype='object', length=2304))], verbose_feature_names_out=False) |
svc | SVC(probability=True, random_state=42) |
columntransformer__n_jobs | |
columntransformer__remainder | drop |
columntransformer__sparse_threshold | 0.3 |
columntransformer__transformer_weights | |
columntransformer__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=563))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8', 'avg_9', 'avg_10', ... 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764', 'max_765', 'max_766', 'max_767', 'max_768'], dtype='object', length=2304))] |
columntransformer__verbose | False |
columntransformer__verbose_feature_names_out | False |
columntransformer__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=563))]) |
columntransformer__num__memory | |
columntransformer__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=563))] |
columntransformer__num__verbose | False |
columntransformer__num__imputer | SimpleImputer(strategy='median') |
columntransformer__num__scaler | StandardScaler() |
columntransformer__num__pca | PCA(n_components=563) |
columntransformer__num__imputer__add_indicator | False |
columntransformer__num__imputer__copy | True |
columntransformer__num__imputer__fill_value | |
columntransformer__num__imputer__keep_empty_features | False |
columntransformer__num__imputer__missing_values | nan |
columntransformer__num__imputer__strategy | median |
columntransformer__num__imputer__verbose | deprecated |
columntransformer__num__scaler__copy | True |
columntransformer__num__scaler__with_mean | True |
columntransformer__num__scaler__with_std | True |
columntransformer__num__pca__copy | True |
columntransformer__num__pca__iterated_power | auto |
columntransformer__num__pca__n_components | 563 |
columntransformer__num__pca__n_oversamples | 10 |
columntransformer__num__pca__power_iteration_normalizer | auto |
columntransformer__num__pca__random_state | |
columntransformer__num__pca__svd_solver | auto |
columntransformer__num__pca__tol | 0.0 |
columntransformer__num__pca__whiten | False |
svc__C | 1.0 |
svc__break_ties | False |
svc__cache_size | 200 |
svc__class_weight | |
svc__coef0 | 0.0 |
svc__decision_function_shape | ovr |
svc__degree | 3 |
svc__gamma | scale |
svc__kernel | rbf |
svc__max_iter | -1 |
svc__probability | True |
svc__random_state | 42 |
svc__shrinking | True |
svc__tol | 0.001 |
svc__verbose | False |
Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler()),('pca',PCA(n_components=563))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)),('svc', SVC(probability=True, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler()),('pca',PCA(n_components=563))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)),('svc', SVC(probability=True, random_state=42))])
ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler', StandardScaler()),('pca',PCA(n_components=563))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)
Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304)
SimpleImputer(strategy='median')
StandardScaler()
PCA(n_components=563)
SVC(probability=True, random_state=42)
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.985849 |
f1 score | 0.985849 |
Confusion Matrix
How to Get Started with the Model
[More Information Needed]
Model Card Authors
huynhdoo
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
BibTeX
@inproceedings{...,year={2023}}
get_started_code
import pickle as pickle with open(pkl_filename, 'rb') as file: pipe = pickle.load(file)
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.