|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user |
|
fronting encoding methods) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionary |
|
of output with special method for the Fast tokenizers) |
|
""" |
|
|
|
import copy |
|
import json |
|
import os |
|
import re |
|
import warnings |
|
from collections import OrderedDict, UserDict |
|
from collections.abc import Mapping, Sized |
|
from contextlib import contextmanager |
|
from dataclasses import dataclass, field |
|
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union |
|
|
|
import numpy as np |
|
from packaging import version |
|
|
|
from transformers import __version__ |
|
from transformers.dynamic_module_utils import custom_object_save |
|
from transformers.utils import ( |
|
ExplicitEnum, |
|
PaddingStrategy, |
|
PushToHubMixin, |
|
TensorType, |
|
add_end_docstrings, |
|
add_model_info_to_auto_map, |
|
cached_file, |
|
copy_func, |
|
download_url, |
|
extract_commit_hash, |
|
is_flax_available, |
|
is_jax_tensor, |
|
is_numpy_array, |
|
is_offline_mode, |
|
is_remote_url, |
|
is_tf_available, |
|
is_tf_tensor, |
|
is_tokenizers_available, |
|
is_torch_available, |
|
is_torch_device, |
|
is_torch_tensor, |
|
logging, |
|
requires_backends, |
|
to_py_obj, |
|
) |
|
|
|
|
|
if TYPE_CHECKING: |
|
if is_torch_available(): |
|
import torch |
|
if is_tf_available(): |
|
import tensorflow as tf |
|
if is_flax_available(): |
|
import jax.numpy as jnp |
|
|
|
|
|
if is_tokenizers_available(): |
|
from tokenizers import AddedToken |
|
from tokenizers import Encoding as EncodingFast |
|
else: |
|
|
|
@dataclass(frozen=True, eq=True) |
|
class AddedToken: |
|
""" |
|
AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the |
|
way it should behave. |
|
""" |
|
|
|
content: str = field(default_factory=str) |
|
single_word: bool = False |
|
lstrip: bool = False |
|
rstrip: bool = False |
|
normalized: bool = True |
|
|
|
def __getstate__(self): |
|
return self.__dict__ |
|
|
|
@dataclass |
|
class EncodingFast: |
|
"""This is dummy class because without the `tokenizers` library we don't have these objects anyway""" |
|
|
|
pass |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VERY_LARGE_INTEGER = int(1e30) |
|
LARGE_INTEGER = int(1e20) |
|
|
|
|
|
TextInput = str |
|
PreTokenizedInput = List[str] |
|
EncodedInput = List[int] |
|
TextInputPair = Tuple[str, str] |
|
PreTokenizedInputPair = Tuple[List[str], List[str]] |
|
EncodedInputPair = Tuple[List[int], List[int]] |
|
|
|
|
|
|
|
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" |
|
ADDED_TOKENS_FILE = "added_tokens.json" |
|
TOKENIZER_CONFIG_FILE = "tokenizer_config.json" |
|
|
|
|
|
FULL_TOKENIZER_FILE = "tokenizer.json" |
|
_re_tokenizer_file = re.compile(r"tokenizer\.(.*)\.json") |
|
|
|
|
|
class TruncationStrategy(ExplicitEnum): |
|
""" |
|
Possible values for the `truncation` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in |
|
an IDE. |
|
""" |
|
|
|
ONLY_FIRST = "only_first" |
|
ONLY_SECOND = "only_second" |
|
LONGEST_FIRST = "longest_first" |
|
DO_NOT_TRUNCATE = "do_not_truncate" |
|
|
|
|
|
class CharSpan(NamedTuple): |
|
""" |
|
Character span in the original string. |
|
|
|
Args: |
|
start (`int`): Index of the first character in the original string. |
|
end (`int`): Index of the character following the last character in the original string. |
|
""" |
|
|
|
start: int |
|
end: int |
|
|
|
|
|
class TokenSpan(NamedTuple): |
|
""" |
|
Token span in an encoded string (list of tokens). |
|
|
|
Args: |
|
start (`int`): Index of the first token in the span. |
|
end (`int`): Index of the token following the last token in the span. |
|
""" |
|
|
|
start: int |
|
end: int |
|
|
|
|
|
class BatchEncoding(UserDict): |
|
""" |
|
Holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase.__call__`], |
|
[`~tokenization_utils_base.PreTrainedTokenizerBase.encode_plus`] and |
|
[`~tokenization_utils_base.PreTrainedTokenizerBase.batch_encode_plus`] methods (tokens, attention_masks, etc). |
|
|
|
This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes |
|
utility methods to map from word/character space to token space. |
|
|
|
Args: |
|
data (`dict`): |
|
Dictionary of lists/arrays/tensors returned by the `__call__`/`encode_plus`/`batch_encode_plus` methods |
|
('input_ids', 'attention_mask', etc.). |
|
encoding (`tokenizers.Encoding` or `Sequence[tokenizers.Encoding]`, *optional*): |
|
If the tokenizer is a fast tokenizer which outputs additional information like mapping from word/character |
|
space to token space the `tokenizers.Encoding` instance or list of instance (for batches) hold this |
|
information. |
|
tensor_type (`Union[None, str, TensorType]`, *optional*): |
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at |
|
initialization. |
|
prepend_batch_axis (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add a batch axis when converting to tensors (see `tensor_type` above). |
|
n_sequences (`Optional[int]`, *optional*): |
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at |
|
initialization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
data: Optional[Dict[str, Any]] = None, |
|
encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None, |
|
tensor_type: Union[None, str, TensorType] = None, |
|
prepend_batch_axis: bool = False, |
|
n_sequences: Optional[int] = None, |
|
): |
|
super().__init__(data) |
|
|
|
if isinstance(encoding, EncodingFast): |
|
encoding = [encoding] |
|
|
|
self._encodings = encoding |
|
|
|
if n_sequences is None and encoding is not None and len(encoding): |
|
n_sequences = encoding[0].n_sequences |
|
|
|
self._n_sequences = n_sequences |
|
|
|
self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) |
|
|
|
@property |
|
def n_sequences(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: The number of sequences used to generate each sample from the batch encoded in this |
|
[`BatchEncoding`]. Currently can be one of `None` (unknown), `1` (a single sentence) or `2` (a pair of |
|
sentences) |
|
""" |
|
return self._n_sequences |
|
|
|
@property |
|
def is_fast(self) -> bool: |
|
""" |
|
`bool`: Indicate whether this [`BatchEncoding`] was generated from the result of a [`PreTrainedTokenizerFast`] |
|
or not. |
|
""" |
|
return self._encodings is not None |
|
|
|
def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]: |
|
""" |
|
If the key is a string, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', |
|
etc.). |
|
|
|
If the key is an integer, get the `tokenizers.Encoding` for batch item with index `key`. |
|
|
|
If the key is a slice, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.) |
|
with the constraint of slice. |
|
""" |
|
if isinstance(item, str): |
|
return self.data[item] |
|
elif self._encodings is not None: |
|
return self._encodings[item] |
|
elif isinstance(item, slice): |
|
return {key: self.data[key][item] for key in self.data.keys()} |
|
else: |
|
raise KeyError( |
|
"Invalid key. Only three types of key are available: " |
|
"(1) string, (2) integers for backend Encoding, and (3) slices for data subsetting." |
|
) |
|
|
|
def __getattr__(self, item: str): |
|
try: |
|
return self.data[item] |
|
except KeyError: |
|
raise AttributeError |
|
|
|
def __getstate__(self): |
|
return {"data": self.data, "encodings": self._encodings} |
|
|
|
def __setstate__(self, state): |
|
if "data" in state: |
|
self.data = state["data"] |
|
|
|
if "encodings" in state: |
|
self._encodings = state["encodings"] |
|
|
|
def keys(self): |
|
return self.data.keys() |
|
|
|
def values(self): |
|
return self.data.values() |
|
|
|
def items(self): |
|
return self.data.items() |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def encodings(self) -> Optional[List[EncodingFast]]: |
|
""" |
|
`Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns `None` if |
|
the input was tokenized through Python (i.e., not a fast) tokenizer. |
|
""" |
|
return self._encodings |
|
|
|
def tokens(self, batch_index: int = 0) -> List[str]: |
|
""" |
|
Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion to |
|
integer indices) at a given batch index (only works for the output of a fast tokenizer). |
|
|
|
Args: |
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. |
|
|
|
Returns: |
|
`List[str]`: The list of tokens at that index. |
|
""" |
|
if not self._encodings: |
|
raise ValueError( |
|
"tokens() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" |
|
" class)." |
|
) |
|
return self._encodings[batch_index].tokens |
|
|
|
def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]: |
|
""" |
|
Return a list mapping the tokens to the id of their original sentences: |
|
|
|
- `None` for special tokens added around or between sequences, |
|
- `0` for tokens corresponding to words in the first sequence, |
|
- `1` for tokens corresponding to words in the second sequence when a pair of sequences was jointly |
|
encoded. |
|
|
|
Args: |
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. |
|
|
|
Returns: |
|
`List[Optional[int]]`: A list indicating the sequence id corresponding to each token. Special tokens added |
|
by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding |
|
sequence. |
|
""" |
|
if not self._encodings: |
|
raise ValueError( |
|
"sequence_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" |
|
" class)." |
|
) |
|
return self._encodings[batch_index].sequence_ids |
|
|
|
def words(self, batch_index: int = 0) -> List[Optional[int]]: |
|
""" |
|
Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. |
|
|
|
Args: |
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. |
|
|
|
Returns: |
|
`List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the |
|
tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word |
|
(several tokens will be mapped to the same word index if they are parts of that word). |
|
""" |
|
if not self._encodings: |
|
raise ValueError( |
|
"words() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" |
|
" class)." |
|
) |
|
warnings.warn( |
|
"`BatchEncoding.words()` property is deprecated and should be replaced with the identical, " |
|
"but more self-explanatory `BatchEncoding.word_ids()` property.", |
|
FutureWarning, |
|
) |
|
return self.word_ids(batch_index) |
|
|
|
def word_ids(self, batch_index: int = 0) -> List[Optional[int]]: |
|
""" |
|
Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. |
|
|
|
Args: |
|
batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. |
|
|
|
Returns: |
|
`List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the |
|
tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word |
|
(several tokens will be mapped to the same word index if they are parts of that word). |
|
""" |
|
if not self._encodings: |
|
raise ValueError( |
|
"word_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" |
|
" class)." |
|
) |
|
return self._encodings[batch_index].word_ids |
|
|
|
def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: |
|
""" |
|
Get the index of the sequence represented by the given token. In the general use case, this method returns `0` |
|
for a single sequence or the first sequence of a pair, and `1` for the second sequence of a pair |
|
|
|
Can be called as: |
|
|
|
- `self.token_to_sequence(token_index)` if batch size is 1 |
|
- `self.token_to_sequence(batch_index, token_index)` if batch size is greater than 1 |
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., |
|
words are defined by the user). In this case it allows to easily associate encoded tokens with provided |
|
tokenized words. |
|
|
|
Args: |
|
batch_or_token_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of |
|
the token in the sequence. |
|
token_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the |
|
sequence. |
|
|
|
Returns: |
|
`int`: Index of the word in the input sequence. |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("token_to_sequence() is not available when using Python based tokenizers") |
|
if token_index is not None: |
|
batch_index = batch_or_token_index |
|
else: |
|
batch_index = 0 |
|
token_index = batch_or_token_index |
|
if batch_index < 0: |
|
batch_index = self._batch_size + batch_index |
|
if token_index < 0: |
|
token_index = self._seq_len + token_index |
|
return self._encodings[batch_index].token_to_sequence(token_index) |
|
|
|
def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: |
|
""" |
|
Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch. |
|
|
|
Can be called as: |
|
|
|
- `self.token_to_word(token_index)` if batch size is 1 |
|
- `self.token_to_word(batch_index, token_index)` if batch size is greater than 1 |
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., |
|
words are defined by the user). In this case it allows to easily associate encoded tokens with provided |
|
tokenized words. |
|
|
|
Args: |
|
batch_or_token_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of |
|
the token in the sequence. |
|
token_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the |
|
sequence. |
|
|
|
Returns: |
|
`int`: Index of the word in the input sequence. |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("token_to_word() is not available when using Python based tokenizers") |
|
if token_index is not None: |
|
batch_index = batch_or_token_index |
|
else: |
|
batch_index = 0 |
|
token_index = batch_or_token_index |
|
if batch_index < 0: |
|
batch_index = self._batch_size + batch_index |
|
if token_index < 0: |
|
token_index = self._seq_len + token_index |
|
return self._encodings[batch_index].token_to_word(token_index) |
|
|
|
def word_to_tokens( |
|
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 |
|
) -> Optional[TokenSpan]: |
|
""" |
|
Get the encoded token span corresponding to a word in a sequence of the batch. |
|
|
|
Token spans are returned as a [`~tokenization_utils_base.TokenSpan`] with: |
|
|
|
- **start** -- Index of the first token. |
|
- **end** -- Index of the token following the last token. |
|
|
|
Can be called as: |
|
|
|
- `self.word_to_tokens(word_index, sequence_index: int = 0)` if batch size is 1 |
|
- `self.word_to_tokens(batch_index, word_index, sequence_index: int = 0)` if batch size is greater or equal to |
|
1 |
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words |
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized |
|
words. |
|
|
|
Args: |
|
batch_or_word_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of |
|
the word in the sequence. |
|
word_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the |
|
sequence. |
|
sequence_index (`int`, *optional*, defaults to 0): |
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 |
|
or 1) the provided word index belongs to. |
|
|
|
Returns: |
|
([`~tokenization_utils_base.TokenSpan`], *optional*): Span of tokens in the encoded sequence. Returns |
|
`None` if no tokens correspond to the word. This can happen especially when the token is a special token |
|
that has been used to format the tokenization. For example when we add a class token at the very beginning |
|
of the tokenization. |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("word_to_tokens() is not available when using Python based tokenizers") |
|
if word_index is not None: |
|
batch_index = batch_or_word_index |
|
else: |
|
batch_index = 0 |
|
word_index = batch_or_word_index |
|
if batch_index < 0: |
|
batch_index = self._batch_size + batch_index |
|
if word_index < 0: |
|
word_index = self._seq_len + word_index |
|
span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index) |
|
return TokenSpan(*span) if span is not None else None |
|
|
|
def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan: |
|
""" |
|
Get the character span corresponding to an encoded token in a sequence of the batch. |
|
|
|
Character spans are returned as a [`~tokenization_utils_base.CharSpan`] with: |
|
|
|
- **start** -- Index of the first character in the original string associated to the token. |
|
- **end** -- Index of the character following the last character in the original string associated to the |
|
token. |
|
|
|
Can be called as: |
|
|
|
- `self.token_to_chars(token_index)` if batch size is 1 |
|
- `self.token_to_chars(batch_index, token_index)` if batch size is greater or equal to 1 |
|
|
|
Args: |
|
batch_or_token_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of |
|
the token in the sequence. |
|
token_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the token or tokens in |
|
the sequence. |
|
|
|
Returns: |
|
[`~tokenization_utils_base.CharSpan`]: Span of characters in the original string, or None, if the token |
|
(e.g. <s>, </s>) doesn't correspond to any chars in the origin string. |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("token_to_chars() is not available when using Python based tokenizers") |
|
if token_index is not None: |
|
batch_index = batch_or_token_index |
|
else: |
|
batch_index = 0 |
|
token_index = batch_or_token_index |
|
span_indices = self._encodings[batch_index].token_to_chars(token_index) |
|
|
|
return CharSpan(*span_indices) if span_indices is not None else None |
|
|
|
def char_to_token( |
|
self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0 |
|
) -> int: |
|
""" |
|
Get the index of the token in the encoded output comprising a character in the original string for a sequence |
|
of the batch. |
|
|
|
Can be called as: |
|
|
|
- `self.char_to_token(char_index)` if batch size is 1 |
|
- `self.char_to_token(batch_index, char_index)` if batch size is greater or equal to 1 |
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words |
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized |
|
words. |
|
|
|
Args: |
|
batch_or_char_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of |
|
the word in the sequence |
|
char_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the |
|
sequence. |
|
sequence_index (`int`, *optional*, defaults to 0): |
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 |
|
or 1) the provided character index belongs to. |
|
|
|
|
|
Returns: |
|
`int`: Index of the token. |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("char_to_token() is not available when using Python based tokenizers") |
|
if char_index is not None: |
|
batch_index = batch_or_char_index |
|
else: |
|
batch_index = 0 |
|
char_index = batch_or_char_index |
|
return self._encodings[batch_index].char_to_token(char_index, sequence_index) |
|
|
|
def word_to_chars( |
|
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 |
|
) -> CharSpan: |
|
""" |
|
Get the character span in the original string corresponding to given word in a sequence of the batch. |
|
|
|
Character spans are returned as a CharSpan NamedTuple with: |
|
|
|
- start: index of the first character in the original string |
|
- end: index of the character following the last character in the original string |
|
|
|
Can be called as: |
|
|
|
- `self.word_to_chars(word_index)` if batch size is 1 |
|
- `self.word_to_chars(batch_index, word_index)` if batch size is greater or equal to 1 |
|
|
|
Args: |
|
batch_or_word_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of |
|
the word in the sequence |
|
word_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the |
|
sequence. |
|
sequence_index (`int`, *optional*, defaults to 0): |
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 |
|
or 1) the provided word index belongs to. |
|
|
|
Returns: |
|
`CharSpan` or `List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan |
|
are NamedTuple with: |
|
|
|
- start: index of the first character associated to the token in the original string |
|
- end: index of the character following the last character associated to the token in the original |
|
string |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("word_to_chars() is not available when using Python based tokenizers") |
|
if word_index is not None: |
|
batch_index = batch_or_word_index |
|
else: |
|
batch_index = 0 |
|
word_index = batch_or_word_index |
|
return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index))) |
|
|
|
def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int: |
|
""" |
|
Get the word in the original string corresponding to a character in the original string of a sequence of the |
|
batch. |
|
|
|
Can be called as: |
|
|
|
- `self.char_to_word(char_index)` if batch size is 1 |
|
- `self.char_to_word(batch_index, char_index)` if batch size is greater than 1 |
|
|
|
This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words |
|
are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized |
|
words. |
|
|
|
Args: |
|
batch_or_char_index (`int`): |
|
Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of |
|
the character in the original string. |
|
char_index (`int`, *optional*): |
|
If a batch index is provided in *batch_or_token_index*, this can be the index of the character in the |
|
original string. |
|
sequence_index (`int`, *optional*, defaults to 0): |
|
If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 |
|
or 1) the provided character index belongs to. |
|
|
|
|
|
Returns: |
|
`int` or `List[int]`: Index or indices of the associated encoded token(s). |
|
""" |
|
|
|
if not self._encodings: |
|
raise ValueError("char_to_word() is not available when using Python based tokenizers") |
|
if char_index is not None: |
|
batch_index = batch_or_char_index |
|
else: |
|
batch_index = 0 |
|
char_index = batch_or_char_index |
|
return self._encodings[batch_index].char_to_word(char_index, sequence_index) |
|
|
|
def convert_to_tensors( |
|
self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False |
|
): |
|
""" |
|
Convert the inner content to tensors. |
|
|
|
Args: |
|
tensor_type (`str` or [`~utils.TensorType`], *optional*): |
|
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If |
|
`None`, no modification is done. |
|
prepend_batch_axis (`int`, *optional*, defaults to `False`): |
|
Whether or not to add the batch dimension during the conversion. |
|
""" |
|
if tensor_type is None: |
|
return self |
|
|
|
|
|
if not isinstance(tensor_type, TensorType): |
|
tensor_type = TensorType(tensor_type) |
|
|
|
|
|
if tensor_type == TensorType.TENSORFLOW: |
|
if not is_tf_available(): |
|
raise ImportError( |
|
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." |
|
) |
|
import tensorflow as tf |
|
|
|
as_tensor = tf.constant |
|
is_tensor = tf.is_tensor |
|
elif tensor_type == TensorType.PYTORCH: |
|
if not is_torch_available(): |
|
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") |
|
import torch |
|
|
|
as_tensor = torch.tensor |
|
is_tensor = torch.is_tensor |
|
elif tensor_type == TensorType.JAX: |
|
if not is_flax_available(): |
|
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") |
|
import jax.numpy as jnp |
|
|
|
as_tensor = jnp.array |
|
is_tensor = is_jax_tensor |
|
else: |
|
|
|
def as_tensor(value, dtype=None): |
|
if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): |
|
value_lens = [len(val) for val in value] |
|
if len(set(value_lens)) > 1 and dtype is None: |
|
|
|
value = as_tensor([np.asarray(val) for val in value], dtype=object) |
|
return np.asarray(value, dtype=dtype) |
|
|
|
is_tensor = is_numpy_array |
|
|
|
|
|
for key, value in self.items(): |
|
try: |
|
if prepend_batch_axis: |
|
value = [value] |
|
|
|
if not is_tensor(value): |
|
tensor = as_tensor(value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self[key] = tensor |
|
except Exception as e: |
|
if key == "overflowing_tokens": |
|
raise ValueError( |
|
"Unable to create tensor returning overflowing tokens of different lengths. " |
|
"Please see if a fast version of this tokenizer is available to have this feature available." |
|
) from e |
|
raise ValueError( |
|
"Unable to create tensor, you should probably activate truncation and/or padding with" |
|
" 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your" |
|
f" features (`{key}` in this case) have excessive nesting (inputs type `list` where type `int` is" |
|
" expected)." |
|
) from e |
|
|
|
return self |
|
|
|
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding": |
|
""" |
|
Send all values to device by calling `v.to(device)` (PyTorch only). |
|
|
|
Args: |
|
device (`str` or `torch.device`): The device to put the tensors on. |
|
|
|
Returns: |
|
[`BatchEncoding`]: The same instance after modification. |
|
""" |
|
requires_backends(self, ["torch"]) |
|
|
|
|
|
|
|
|
|
if isinstance(device, str) or is_torch_device(device) or isinstance(device, int): |
|
self.data = {k: v.to(device=device) for k, v in self.data.items()} |
|
else: |
|
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.") |
|
return self |
|
|
|
|
|
class SpecialTokensMixin: |
|
""" |
|
A mixin derived by [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] to handle specific behaviors related to |
|
special tokens. In particular, this class hold the attributes which can be used to directly access these special |
|
tokens in a model-independent manner and allow to set and update the special tokens. |
|
|
|
Args: |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the beginning of a sentence. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the end of a sentence. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing an out-of-vocabulary token. |
|
sep_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token separating two different sentences in the same input (used by BERT for instance). |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
cls_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the class of the input (used by BERT for instance). |
|
mask_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing a masked token (used by masked-language modeling pretraining objectives, like |
|
BERT). |
|
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): |
|
A tuple or a list of additional special tokens. |
|
""" |
|
|
|
SPECIAL_TOKENS_ATTRIBUTES = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
"additional_special_tokens", |
|
] |
|
|
|
def __init__(self, verbose=True, **kwargs): |
|
self._bos_token = None |
|
self._eos_token = None |
|
self._unk_token = None |
|
self._sep_token = None |
|
self._pad_token = None |
|
self._cls_token = None |
|
self._mask_token = None |
|
self._pad_token_type_id = 0 |
|
self._additional_special_tokens = [] |
|
self.verbose = verbose |
|
|
|
|
|
|
|
|
|
for key, value in kwargs.items(): |
|
if value is None: |
|
continue |
|
if key in self.SPECIAL_TOKENS_ATTRIBUTES: |
|
if key == "additional_special_tokens": |
|
assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple" |
|
assert all( |
|
isinstance(t, (str, AddedToken)) for t in value |
|
), "One of the tokens is not a string or an AddedToken" |
|
setattr(self, key, value) |
|
elif isinstance(value, (str, AddedToken)): |
|
setattr(self, key, value) |
|
else: |
|
raise TypeError(f"special token {key} has to be either str or AddedToken but got: {type(value)}") |
|
|
|
def sanitize_special_tokens(self) -> int: |
|
""" |
|
Make sure that all the special tokens attributes of the tokenizer (`tokenizer.mask_token`, |
|
`tokenizer.cls_token`, etc.) are in the vocabulary. |
|
|
|
Add the missing ones to the vocabulary if needed. |
|
|
|
Return: |
|
`int`: The number of tokens added in the vocabulary during the operation. |
|
""" |
|
return self.add_tokens(self.all_special_tokens_extended, special_tokens=True) |
|
|
|
def add_special_tokens( |
|
self, special_tokens_dict: Dict[str, Union[str, AddedToken]], replace_additional_special_tokens=True |
|
) -> int: |
|
""" |
|
Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If |
|
special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the |
|
current vocabulary). |
|
|
|
Note,None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding |
|
matrix of the model so that its embedding matrix matches the tokenizer. |
|
|
|
In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. |
|
|
|
Using `add_special_tokens` will ensure your special tokens can be used in several ways: |
|
|
|
- Special tokens are carefully handled by the tokenizer (they are never split). |
|
- You can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This |
|
makes it easy to develop model-agnostic training and fine-tuning scripts. |
|
|
|
When possible, special tokens are already registered for provided pretrained models (for instance |
|
[`BertTokenizer`] `cls_token` is already registered to be :obj*'[CLS]'* and XLM's one is also registered to be |
|
`'</s>'`). |
|
|
|
Args: |
|
special_tokens_dict (dictionary *str* to *str* or `tokenizers.AddedToken`): |
|
Keys should be in the list of predefined special attributes: [`bos_token`, `eos_token`, `unk_token`, |
|
`sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`]. |
|
|
|
Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer |
|
assign the index of the `unk_token` to them). |
|
replace_additional_special_tokens (`bool`, *optional*,, defaults to `True`): |
|
If `True`, the existing list of additional special tokens will be replaced by the one specified in |
|
`special_tokens_dict`. Otherwise, `self._additional_special_tokens` is updated. In the former case, the |
|
tokens will NOT be removed from the tokenizer's full vocabulary - they are only being flagged as |
|
non-special tokens. |
|
|
|
Returns: |
|
`int`: Number of tokens added to the vocabulary. |
|
|
|
Examples: |
|
|
|
```python |
|
# Let's see how to add a new classification token to GPT-2 |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
model = GPT2Model.from_pretrained("gpt2") |
|
|
|
special_tokens_dict = {"cls_token": "<CLS>"} |
|
|
|
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) |
|
print("We have added", num_added_toks, "tokens") |
|
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
assert tokenizer.cls_token == "<CLS>" |
|
```""" |
|
if not special_tokens_dict: |
|
return 0 |
|
|
|
added_tokens = 0 |
|
for key, value in special_tokens_dict.items(): |
|
assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token" |
|
|
|
if self.verbose: |
|
logger.info(f"Assigning {value} to the {key} key of the tokenizer") |
|
|
|
if key == "additional_special_tokens": |
|
assert isinstance(value, (list, tuple)) and all( |
|
isinstance(t, (str, AddedToken)) for t in value |
|
), f"Tokens {value} for key {key} should all be str or AddedToken instances" |
|
|
|
if replace_additional_special_tokens: |
|
setattr(self, key, value) |
|
else: |
|
|
|
additional_special_tokens = getattr(self, key) |
|
additional_special_tokens_set = set(additional_special_tokens) |
|
to_add = [] |
|
for token in value: |
|
if str(token) not in additional_special_tokens_set and str(token) not in to_add: |
|
to_add.append(token) |
|
|
|
additional_special_tokens.extend(to_add) |
|
self.additional_special_tokens = additional_special_tokens |
|
|
|
added_tokens += self.add_tokens(value, special_tokens=True) |
|
else: |
|
assert isinstance( |
|
value, (str, AddedToken) |
|
), f"Token {value} for key {key} should be a str or an AddedToken instance" |
|
setattr(self, key, value) |
|
added_tokens += self.add_tokens([value], special_tokens=True) |
|
|
|
return added_tokens |
|
|
|
def add_tokens( |
|
self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False |
|
) -> int: |
|
""" |
|
Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to |
|
it with indices starting from length of the current vocabulary and and will be isolated before the tokenization |
|
algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore |
|
not treated in the same way. |
|
|
|
Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix |
|
of the model so that its embedding matrix matches the tokenizer. |
|
|
|
In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. |
|
|
|
Args: |
|
new_tokens (`str`, `tokenizers.AddedToken` or a list of *str* or `tokenizers.AddedToken`): |
|
Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string |
|
token to let you personalize its behavior: whether this token should only match against a single word, |
|
whether this token should strip all potential whitespaces on the left side, whether this token should |
|
strip all potential whitespaces on the right side, etc. |
|
special_tokens (`bool`, *optional*, defaults to `False`): |
|
Can be used to specify if the token is a special token. This mostly change the normalization behavior |
|
(special tokens like CLS or [MASK] are usually not lower-cased for instance). |
|
|
|
See details for `tokenizers.AddedToken` in HuggingFace tokenizers library. |
|
|
|
Returns: |
|
`int`: Number of tokens added to the vocabulary. |
|
|
|
Examples: |
|
|
|
```python |
|
# Let's see how to increase the vocabulary of Bert model and tokenizer |
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") |
|
model = BertModel.from_pretrained("bert-base-uncased") |
|
|
|
num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) |
|
print("We have added", num_added_toks, "tokens") |
|
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. |
|
model.resize_token_embeddings(len(tokenizer)) |
|
```""" |
|
if not new_tokens: |
|
return 0 |
|
|
|
if not isinstance(new_tokens, (list, tuple)): |
|
new_tokens = [new_tokens] |
|
|
|
return self._add_tokens(new_tokens, special_tokens=special_tokens) |
|
|
|
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: |
|
raise NotImplementedError |
|
|
|
@property |
|
def bos_token(self) -> str: |
|
""" |
|
`str`: Beginning of sentence token. Log an error if used while not having been set. |
|
""" |
|
if self._bos_token is None: |
|
if self.verbose: |
|
logger.error("Using bos_token, but it is not set yet.") |
|
return None |
|
return str(self._bos_token) |
|
|
|
@property |
|
def eos_token(self) -> str: |
|
""" |
|
`str`: End of sentence token. Log an error if used while not having been set. |
|
""" |
|
if self._eos_token is None: |
|
if self.verbose: |
|
logger.error("Using eos_token, but it is not set yet.") |
|
return None |
|
return str(self._eos_token) |
|
|
|
@property |
|
def unk_token(self) -> str: |
|
""" |
|
`str`: Unknown token. Log an error if used while not having been set. |
|
""" |
|
if self._unk_token is None: |
|
if self.verbose: |
|
logger.error("Using unk_token, but it is not set yet.") |
|
return None |
|
return str(self._unk_token) |
|
|
|
@property |
|
def sep_token(self) -> str: |
|
""" |
|
`str`: Separation token, to separate context and query in an input sequence. Log an error if used while not |
|
having been set. |
|
""" |
|
if self._sep_token is None: |
|
if self.verbose: |
|
logger.error("Using sep_token, but it is not set yet.") |
|
return None |
|
return str(self._sep_token) |
|
|
|
@property |
|
def pad_token(self) -> str: |
|
""" |
|
`str`: Padding token. Log an error if used while not having been set. |
|
""" |
|
if self._pad_token is None: |
|
if self.verbose: |
|
logger.error("Using pad_token, but it is not set yet.") |
|
return None |
|
return str(self._pad_token) |
|
|
|
@property |
|
def cls_token(self) -> str: |
|
""" |
|
`str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full |
|
depth of the model. Log an error if used while not having been set. |
|
""" |
|
if self._cls_token is None: |
|
if self.verbose: |
|
logger.error("Using cls_token, but it is not set yet.") |
|
return None |
|
return str(self._cls_token) |
|
|
|
@property |
|
def mask_token(self) -> str: |
|
""" |
|
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not |
|
having been set. |
|
""" |
|
if self._mask_token is None: |
|
if self.verbose: |
|
logger.error("Using mask_token, but it is not set yet.") |
|
return None |
|
return str(self._mask_token) |
|
|
|
@property |
|
def additional_special_tokens(self) -> List[str]: |
|
""" |
|
`List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been |
|
set. |
|
""" |
|
if self._additional_special_tokens is None: |
|
if self.verbose: |
|
logger.error("Using additional_special_tokens, but it is not set yet.") |
|
return None |
|
return [str(tok) for tok in self._additional_special_tokens] |
|
|
|
@bos_token.setter |
|
def bos_token(self, value): |
|
self._bos_token = value |
|
|
|
@eos_token.setter |
|
def eos_token(self, value): |
|
self._eos_token = value |
|
|
|
@unk_token.setter |
|
def unk_token(self, value): |
|
self._unk_token = value |
|
|
|
@sep_token.setter |
|
def sep_token(self, value): |
|
self._sep_token = value |
|
|
|
@pad_token.setter |
|
def pad_token(self, value): |
|
self._pad_token = value |
|
|
|
@cls_token.setter |
|
def cls_token(self, value): |
|
self._cls_token = value |
|
|
|
@mask_token.setter |
|
def mask_token(self, value): |
|
self._mask_token = value |
|
|
|
@additional_special_tokens.setter |
|
def additional_special_tokens(self, value): |
|
self._additional_special_tokens = value |
|
|
|
@property |
|
def bos_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns `None` if the token has not |
|
been set. |
|
""" |
|
if self._bos_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.bos_token) |
|
|
|
@property |
|
def eos_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been |
|
set. |
|
""" |
|
if self._eos_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.eos_token) |
|
|
|
@property |
|
def unk_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the unknown token in the vocabulary. Returns `None` if the token has not been set. |
|
""" |
|
if self._unk_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.unk_token) |
|
|
|
@property |
|
def sep_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input |
|
sequence. Returns `None` if the token has not been set. |
|
""" |
|
if self._sep_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.sep_token) |
|
|
|
@property |
|
def pad_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the padding token in the vocabulary. Returns `None` if the token has not been set. |
|
""" |
|
if self._pad_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.pad_token) |
|
|
|
@property |
|
def pad_token_type_id(self) -> int: |
|
""" |
|
`int`: Id of the padding token type in the vocabulary. |
|
""" |
|
return self._pad_token_type_id |
|
|
|
@property |
|
def cls_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence |
|
leveraging self-attention along the full depth of the model. |
|
|
|
Returns `None` if the token has not been set. |
|
""" |
|
if self._cls_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.cls_token) |
|
|
|
@property |
|
def mask_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language |
|
modeling. Returns `None` if the token has not been set. |
|
""" |
|
if self._mask_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.mask_token) |
|
|
|
@property |
|
def additional_special_tokens_ids(self) -> List[int]: |
|
""" |
|
`List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having |
|
been set. |
|
""" |
|
return self.convert_tokens_to_ids(self.additional_special_tokens) |
|
|
|
@bos_token_id.setter |
|
def bos_token_id(self, value): |
|
self._bos_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@eos_token_id.setter |
|
def eos_token_id(self, value): |
|
self._eos_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@unk_token_id.setter |
|
def unk_token_id(self, value): |
|
self._unk_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@sep_token_id.setter |
|
def sep_token_id(self, value): |
|
self._sep_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@pad_token_id.setter |
|
def pad_token_id(self, value): |
|
self._pad_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@cls_token_id.setter |
|
def cls_token_id(self, value): |
|
self._cls_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@mask_token_id.setter |
|
def mask_token_id(self, value): |
|
self._mask_token = self.convert_ids_to_tokens(value) if value is not None else None |
|
|
|
@additional_special_tokens_ids.setter |
|
def additional_special_tokens_ids(self, values): |
|
self._additional_special_tokens = [self.convert_ids_to_tokens(value) for value in values] |
|
|
|
@property |
|
def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]: |
|
""" |
|
`Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (`cls_token`, |
|
`unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). |
|
|
|
Convert potential tokens of `tokenizers.AddedToken` type to string. |
|
""" |
|
set_attr = {} |
|
for attr in self.SPECIAL_TOKENS_ATTRIBUTES: |
|
attr_value = getattr(self, "_" + attr) |
|
if attr_value: |
|
set_attr[attr] = ( |
|
type(attr_value)(str(attr_value_sub) for attr_value_sub in attr_value) |
|
if isinstance(attr_value, (list, tuple)) |
|
else str(attr_value) |
|
) |
|
return set_attr |
|
|
|
@property |
|
def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]: |
|
""" |
|
`Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping |
|
special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). |
|
|
|
Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how |
|
special tokens are tokenized. |
|
""" |
|
set_attr = {} |
|
for attr in self.SPECIAL_TOKENS_ATTRIBUTES: |
|
attr_value = getattr(self, "_" + attr) |
|
if attr_value: |
|
set_attr[attr] = attr_value |
|
return set_attr |
|
|
|
@property |
|
def all_special_tokens(self) -> List[str]: |
|
""" |
|
`List[str]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes. |
|
|
|
Convert tokens of `tokenizers.AddedToken` type to string. |
|
""" |
|
all_toks = [str(s) for s in self.all_special_tokens_extended] |
|
return all_toks |
|
|
|
@property |
|
def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]: |
|
""" |
|
`List[Union[str, tokenizers.AddedToken]]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class |
|
attributes. |
|
|
|
Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how |
|
special tokens are tokenized. |
|
""" |
|
all_toks = [] |
|
set_attr = self.special_tokens_map_extended |
|
for attr_value in set_attr.values(): |
|
all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) |
|
all_toks = list(OrderedDict.fromkeys(all_toks)) |
|
return all_toks |
|
|
|
@property |
|
def all_special_ids(self) -> List[int]: |
|
""" |
|
`List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes. |
|
""" |
|
all_toks = self.all_special_tokens |
|
all_ids = self.convert_tokens_to_ids(all_toks) |
|
return all_ids |
|
|
|
|
|
ENCODE_KWARGS_DOCSTRING = r""" |
|
add_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Whether or not to encode the sequences with the special tokens relative to their model. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Activates and controls padding. Accepts the following values: |
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): |
|
Activates and controls truncation. Accepts the following values: |
|
|
|
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or |
|
to the maximum acceptable input length for the model if that argument is not provided. This will |
|
truncate token by token, removing a token from the longest sequence in the pair if a pair of |
|
sequences (or a batch of pairs) is provided. |
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths |
|
greater than the model maximum admissible input size). |
|
max_length (`int`, *optional*): |
|
Controls the maximum length to use by one of the truncation/padding parameters. |
|
|
|
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length |
|
is required by one of the truncation/padding parameters. If the model has no specific maximum input |
|
length (like XLNet) truncation/padding to a maximum length will be deactivated. |
|
stride (`int`, *optional*, defaults to 0): |
|
If set to a number along with `max_length`, the overflowing tokens returned when |
|
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence |
|
returned to provide some overlap between truncated and overflowing sequences. The value of this |
|
argument defines the number of overlapping tokens. |
|
is_split_into_words (`bool`, *optional*, defaults to `False`): |
|
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the |
|
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) |
|
which it will tokenize. This is useful for NER or token classification. |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta). |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
""" |
|
|
|
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" |
|
return_token_type_ids (`bool`, *optional*): |
|
Whether to return token type IDs. If left to the default, will return the token type IDs according to |
|
the specific tokenizer's default, defined by the `return_outputs` attribute. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
return_attention_mask (`bool`, *optional*): |
|
Whether to return the attention mask. If left to the default, will return the attention mask according |
|
to the specific tokenizer's default, defined by the `return_outputs` attribute. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
return_overflowing_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch |
|
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead |
|
of returning overflowing tokens. |
|
return_special_tokens_mask (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return special tokens mask information. |
|
return_offsets_mapping (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return `(char_start, char_end)` for each token. |
|
|
|
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using |
|
Python's tokenizer, this method will raise `NotImplementedError`. |
|
return_length (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the lengths of the encoded inputs. |
|
verbose (`bool`, *optional*, defaults to `True`): |
|
Whether or not to print more information and warnings. |
|
**kwargs: passed to the `self.tokenize()` method |
|
|
|
Return: |
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
|
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or |
|
if *"token_type_ids"* is in `self.model_input_names`). |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and |
|
`return_overflowing_tokens=True`). |
|
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and |
|
`return_overflowing_tokens=True`). |
|
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying |
|
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). |
|
- **length** -- The length of the inputs (when `return_length=True`) |
|
""" |
|
|
|
INIT_TOKENIZER_DOCSTRING = r""" |
|
Class attributes (overridden by derived classes) |
|
|
|
- **vocab_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each |
|
vocabulary file required by the model, and as associated values, the filename for saving the associated file |
|
(string). |
|
- **pretrained_vocab_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the |
|
high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the |
|
low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the |
|
associated pretrained vocabulary file. |
|
- **max_model_input_sizes** (`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the `short-cut-names` |
|
of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, |
|
or `None` if the model has no maximum input size. |
|
- **pretrained_init_configuration** (`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the |
|
`short-cut-names` of the pretrained models, and as associated values, a dictionary of specific arguments to |
|
pass to the `__init__` method of the tokenizer class for this pretrained model when loading the tokenizer |
|
with the [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`] method. |
|
- **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model. |
|
- **padding_side** (`str`) -- The default value for the side on which the model should have padding applied. |
|
Should be `'right'` or `'left'`. |
|
- **truncation_side** (`str`) -- The default value for the side on which the model should have truncation |
|
applied. Should be `'right'` or `'left'`. |
|
|
|
Args: |
|
model_max_length (`int`, *optional*): |
|
The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is |
|
loaded with [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], this will be set to the |
|
value stored for the associated model in `max_model_input_sizes` (see above). If no value is provided, will |
|
default to VERY_LARGE_INTEGER (`int(1e30)`). |
|
padding_side (`str`, *optional*): |
|
The side on which the model should have padding applied. Should be selected between ['right', 'left']. |
|
Default value is picked from the class attribute of the same name. |
|
truncation_side (`str`, *optional*): |
|
The side on which the model should have truncation applied. Should be selected between ['right', 'left']. |
|
Default value is picked from the class attribute of the same name. |
|
model_input_names (`List[string]`, *optional*): |
|
The list of inputs accepted by the forward pass of the model (like `"token_type_ids"` or |
|
`"attention_mask"`). Default value is picked from the class attribute of the same name. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the beginning of a sentence. Will be associated to `self.bos_token` and |
|
`self.bos_token_id`. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the end of a sentence. Will be associated to `self.eos_token` and |
|
`self.eos_token_id`. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing an out-of-vocabulary token. Will be associated to `self.unk_token` and |
|
`self.unk_token_id`. |
|
sep_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token separating two different sentences in the same input (used by BERT for instance). Will be |
|
associated to `self.sep_token` and `self.sep_token_id`. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. Will be associated to `self.pad_token` and `self.pad_token_id`. |
|
cls_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing the class of the input (used by BERT for instance). Will be associated to |
|
`self.cls_token` and `self.cls_token_id`. |
|
mask_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token representing a masked token (used by masked-language modeling pretraining objectives, like |
|
BERT). Will be associated to `self.mask_token` and `self.mask_token_id`. |
|
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): |
|
A tuple or a list of additional special tokens. Add them here to ensure they won't be split by the |
|
tokenization process. Will be associated to `self.additional_special_tokens` and |
|
`self.additional_special_tokens_ids`. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should cleanup the spaces that were added when splitting the input text during the |
|
tokenization process. |
|
""" |
|
|
|
|
|
@add_end_docstrings(INIT_TOKENIZER_DOCSTRING) |
|
class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin): |
|
""" |
|
Base class for [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`]. |
|
|
|
Handles shared (mostly boiler plate) methods for those two classes. |
|
""" |
|
|
|
vocab_files_names: Dict[str, str] = {} |
|
pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {} |
|
pretrained_init_configuration: Dict[str, Dict[str, Any]] = {} |
|
max_model_input_sizes: Dict[str, Optional[int]] = {} |
|
_auto_class: Optional[str] = None |
|
|
|
|
|
|
|
model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"] |
|
padding_side: str = "right" |
|
truncation_side: str = "right" |
|
slow_tokenizer_class = None |
|
|
|
def __init__(self, **kwargs): |
|
|
|
self.init_inputs = () |
|
self.init_kwargs = copy.deepcopy(kwargs) |
|
self.name_or_path = kwargs.pop("name_or_path", "") |
|
self._processor_class = kwargs.pop("processor_class", None) |
|
|
|
|
|
model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None)) |
|
self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER |
|
|
|
|
|
|
|
self.padding_side = kwargs.pop("padding_side", self.padding_side) |
|
if self.padding_side not in ["right", "left"]: |
|
raise ValueError( |
|
f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}" |
|
) |
|
|
|
self.truncation_side = kwargs.pop("truncation_side", self.truncation_side) |
|
if self.truncation_side not in ["right", "left"]: |
|
raise ValueError( |
|
f"Padding side should be selected between 'right' and 'left', current value: {self.truncation_side}" |
|
) |
|
|
|
self.model_input_names = kwargs.pop("model_input_names", self.model_input_names) |
|
|
|
|
|
self.clean_up_tokenization_spaces = kwargs.pop("clean_up_tokenization_spaces", False) |
|
|
|
self.deprecation_warnings = ( |
|
{} |
|
) |
|
self._in_target_context_manager = False |
|
super().__init__(**kwargs) |
|
|
|
@property |
|
def max_len_single_sentence(self) -> int: |
|
""" |
|
`int`: The maximum length of a sentence that can be fed to the model. |
|
""" |
|
return self.model_max_length - self.num_special_tokens_to_add(pair=False) |
|
|
|
@property |
|
def max_len_sentences_pair(self) -> int: |
|
""" |
|
`int`: The maximum combined length of a pair of sentences that can be fed to the model. |
|
""" |
|
return self.model_max_length - self.num_special_tokens_to_add(pair=True) |
|
|
|
@max_len_single_sentence.setter |
|
def max_len_single_sentence(self, value) -> int: |
|
|
|
if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose: |
|
if not self.deprecation_warnings.get("max_len_single_sentence", False): |
|
logger.warning( |
|
"Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." |
|
) |
|
self.deprecation_warnings["max_len_single_sentence"] = True |
|
else: |
|
raise ValueError( |
|
"Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." |
|
) |
|
|
|
@max_len_sentences_pair.setter |
|
def max_len_sentences_pair(self, value) -> int: |
|
|
|
if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose: |
|
if not self.deprecation_warnings.get("max_len_sentences_pair", False): |
|
logger.warning( |
|
"Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up." |
|
) |
|
self.deprecation_warnings["max_len_sentences_pair"] = True |
|
else: |
|
raise ValueError("Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up.") |
|
|
|
def _set_processor_class(self, processor_class: str): |
|
"""Sets processor class as an attribute.""" |
|
self._processor_class = processor_class |
|
|
|
def __repr__(self) -> str: |
|
return ( |
|
f"{self.__class__.__name__}(name_or_path='{self.name_or_path}'," |
|
f" vocab_size={self.vocab_size}, model_max_length={self.model_max_length}, is_fast={self.is_fast}," |
|
f" padding_side='{self.padding_side}', truncation_side='{self.truncation_side}'," |
|
f" special_tokens={self.special_tokens_map_extended}, clean_up_tokenization_spaces={self.clean_up_tokenization_spaces})" |
|
) |
|
|
|
def __len__(self) -> int: |
|
raise NotImplementedError() |
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
""" |
|
Returns the vocabulary as a dictionary of token to index. |
|
|
|
`tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the |
|
vocab. |
|
|
|
Returns: |
|
`Dict[str, int]`: The vocabulary. |
|
""" |
|
raise NotImplementedError() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
*init_inputs, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a [`~tokenization_utils_base.PreTrainedTokenizerBase`] (or a derived class) from a predefined |
|
tokenizer. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved |
|
using the [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`] method, e.g., |
|
`./my_model_directory/`. |
|
- (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary |
|
file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., |
|
`./my_model_directory/vocab.txt`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download the vocabulary files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Attempt to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether or not to only rely on local files and not to attempt to download any files. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
subfolder (`str`, *optional*): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for |
|
facebook/rag-token-base), specify it here. |
|
inputs (additional positional arguments, *optional*): |
|
Will be passed along to the Tokenizer `__init__` method. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the Tokenizer `__init__` method. Can be used to set special tokens like `bos_token`, |
|
`eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, |
|
`additional_special_tokens`. See parameters in the `__init__` for more details. |
|
|
|
<Tip> |
|
|
|
Passing `use_auth_token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```python |
|
# We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer |
|
# Download vocabulary from huggingface.co and cache. |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
# Download vocabulary from huggingface.co (user-uploaded) and cache. |
|
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased") |
|
|
|
# If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) |
|
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/") |
|
|
|
# If the tokenizer uses a single vocabulary file, you can point directly to this file |
|
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt") |
|
|
|
# You can link tokens to special vocabulary when instantiating |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>") |
|
# You should be sure '<unk>' is in the vocabulary when doing that. |
|
# Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) |
|
assert tokenizer.unk_token == "<unk>" |
|
```""" |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
commit_hash = kwargs.pop("_commit_hash", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
user_agent = {"file_type": "tokenizer", "from_auto_class": from_auto_class, "is_fast": "Fast" in cls.__name__} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
vocab_files = {} |
|
init_configuration = {} |
|
|
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
single_file_id = None |
|
if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): |
|
if len(cls.vocab_files_names) > 1: |
|
raise ValueError( |
|
f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is not " |
|
"supported for this tokenizer. Use a model identifier or the path to a directory instead." |
|
) |
|
warnings.warn( |
|
f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is deprecated and " |
|
"won't be possible anymore in v5. Use a model identifier or the path to a directory instead.", |
|
FutureWarning, |
|
) |
|
file_id = list(cls.vocab_files_names.keys())[0] |
|
|
|
vocab_files[file_id] = pretrained_model_name_or_path |
|
single_file_id = file_id |
|
else: |
|
|
|
additional_files_names = { |
|
"added_tokens_file": ADDED_TOKENS_FILE, |
|
"special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, |
|
"tokenizer_config_file": TOKENIZER_CONFIG_FILE, |
|
} |
|
vocab_files = {**cls.vocab_files_names, **additional_files_names} |
|
|
|
if "tokenizer_file" in vocab_files: |
|
|
|
fast_tokenizer_file = FULL_TOKENIZER_FILE |
|
resolved_config_file = cached_file( |
|
pretrained_model_name_or_path, |
|
TOKENIZER_CONFIG_FILE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
use_auth_token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
_commit_hash=commit_hash, |
|
) |
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) |
|
if resolved_config_file is not None: |
|
with open(resolved_config_file, encoding="utf-8") as reader: |
|
tokenizer_config = json.load(reader) |
|
if "fast_tokenizer_files" in tokenizer_config: |
|
fast_tokenizer_file = get_fast_tokenizer_file(tokenizer_config["fast_tokenizer_files"]) |
|
vocab_files["tokenizer_file"] = fast_tokenizer_file |
|
|
|
|
|
resolved_vocab_files = {} |
|
unresolved_files = [] |
|
for file_id, file_path in vocab_files.items(): |
|
if file_path is None: |
|
resolved_vocab_files[file_id] = None |
|
elif single_file_id == file_id: |
|
if os.path.isfile(file_path): |
|
resolved_vocab_files[file_id] = file_path |
|
elif is_remote_url(file_path): |
|
resolved_vocab_files[file_id] = download_url(file_path, proxies=proxies) |
|
else: |
|
resolved_vocab_files[file_id] = cached_file( |
|
pretrained_model_name_or_path, |
|
file_path, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
use_auth_token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
_commit_hash=commit_hash, |
|
) |
|
commit_hash = extract_commit_hash(resolved_vocab_files[file_id], commit_hash) |
|
|
|
if len(unresolved_files) > 0: |
|
logger.info( |
|
f"Can't load following files from cache: {unresolved_files} and cannot check if these " |
|
"files are necessary for the tokenizer to operate." |
|
) |
|
|
|
if all(full_file_name is None for full_file_name in resolved_vocab_files.values()): |
|
raise EnvironmentError( |
|
f"Can't load tokenizer for '{pretrained_model_name_or_path}'. If you were trying to load it from " |
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " |
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " |
|
f"containing all relevant files for a {cls.__name__} tokenizer." |
|
) |
|
|
|
for file_id, file_path in vocab_files.items(): |
|
if file_id not in resolved_vocab_files: |
|
continue |
|
|
|
if is_local: |
|
logger.info(f"loading file {file_path}") |
|
else: |
|
logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}") |
|
|
|
return cls._from_pretrained( |
|
resolved_vocab_files, |
|
pretrained_model_name_or_path, |
|
init_configuration, |
|
*init_inputs, |
|
use_auth_token=token, |
|
cache_dir=cache_dir, |
|
local_files_only=local_files_only, |
|
_commit_hash=commit_hash, |
|
_is_local=is_local, |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls, |
|
resolved_vocab_files, |
|
pretrained_model_name_or_path, |
|
init_configuration, |
|
*init_inputs, |
|
use_auth_token=None, |
|
cache_dir=None, |
|
local_files_only=False, |
|
_commit_hash=None, |
|
_is_local=False, |
|
**kwargs, |
|
): |
|
|
|
|
|
from_slow = kwargs.get("from_slow", False) |
|
has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None |
|
if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None: |
|
slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained( |
|
copy.deepcopy(resolved_vocab_files), |
|
pretrained_model_name_or_path, |
|
copy.deepcopy(init_configuration), |
|
*init_inputs, |
|
use_auth_token=use_auth_token, |
|
cache_dir=cache_dir, |
|
local_files_only=local_files_only, |
|
_commit_hash=_commit_hash, |
|
**(copy.deepcopy(kwargs)), |
|
) |
|
else: |
|
slow_tokenizer = None |
|
|
|
|
|
|
|
tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None) |
|
if tokenizer_config_file is not None: |
|
with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: |
|
init_kwargs = json.load(tokenizer_config_handle) |
|
|
|
config_tokenizer_class = init_kwargs.get("tokenizer_class") |
|
init_kwargs.pop("tokenizer_class", None) |
|
saved_init_inputs = init_kwargs.pop("init_inputs", ()) |
|
if not init_inputs: |
|
init_inputs = saved_init_inputs |
|
else: |
|
config_tokenizer_class = None |
|
init_kwargs = init_configuration |
|
|
|
if "auto_map" in init_kwargs and not _is_local: |
|
|
|
if isinstance(init_kwargs["auto_map"], (tuple, list)): |
|
init_kwargs["auto_map"] = {"AutoTokenizer": init_kwargs["auto_map"]} |
|
init_kwargs["auto_map"] = add_model_info_to_auto_map( |
|
init_kwargs["auto_map"], pretrained_model_name_or_path |
|
) |
|
|
|
if config_tokenizer_class is None: |
|
from .models.auto.configuration_auto import AutoConfig |
|
|
|
|
|
try: |
|
config = AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
use_auth_token=use_auth_token, |
|
cache_dir=cache_dir, |
|
local_files_only=local_files_only, |
|
_commit_hash=_commit_hash, |
|
) |
|
config_tokenizer_class = config.tokenizer_class |
|
except (OSError, ValueError, KeyError): |
|
|
|
config = None |
|
if config_tokenizer_class is None: |
|
|
|
|
|
from .models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES |
|
|
|
if hasattr(config, "model_type"): |
|
model_type = config.model_type |
|
else: |
|
|
|
model_type = None |
|
for pattern in TOKENIZER_MAPPING_NAMES.keys(): |
|
if pattern in str(pretrained_model_name_or_path): |
|
model_type = pattern |
|
break |
|
|
|
if model_type is not None: |
|
config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING_NAMES.get( |
|
model_type, (None, None) |
|
) |
|
if config_tokenizer_class is None: |
|
config_tokenizer_class = config_tokenizer_class_fast |
|
|
|
if config_tokenizer_class is not None: |
|
if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""): |
|
logger.warning( |
|
"The tokenizer class you load from this checkpoint is not the same type as the class this" |
|
" function is called from. It may result in unexpected tokenization. \nThe tokenizer class you" |
|
f" load from this checkpoint is '{config_tokenizer_class}'. \nThe class this function is called" |
|
f" from is '{cls.__name__}'." |
|
) |
|
|
|
|
|
init_kwargs.update(kwargs) |
|
|
|
|
|
def convert_added_tokens(obj: Union[AddedToken, Any]): |
|
if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken": |
|
obj.pop("__type") |
|
return AddedToken(**obj) |
|
elif isinstance(obj, (list, tuple)): |
|
return [convert_added_tokens(o) for o in obj] |
|
elif isinstance(obj, dict): |
|
return {k: convert_added_tokens(v) for k, v in obj.items()} |
|
return obj |
|
|
|
init_kwargs = convert_added_tokens(init_kwargs) |
|
|
|
|
|
if pretrained_model_name_or_path in cls.max_model_input_sizes: |
|
|
|
|
|
|
|
model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path] |
|
if model_max_length is not None and isinstance(model_max_length, (int, float)): |
|
model_max_length = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length) |
|
|
|
|
|
|
|
|
|
init_kwargs["model_max_length"] = cls._eventually_correct_t5_max_length( |
|
pretrained_model_name_or_path, model_max_length, init_kwargs.get("model_max_length") |
|
) |
|
|
|
|
|
|
|
added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None) |
|
for args_name, file_path in resolved_vocab_files.items(): |
|
if args_name not in init_kwargs: |
|
init_kwargs[args_name] = file_path |
|
|
|
if slow_tokenizer is not None: |
|
init_kwargs["__slow_tokenizer"] = slow_tokenizer |
|
|
|
init_kwargs["name_or_path"] = pretrained_model_name_or_path |
|
|
|
|
|
try: |
|
tokenizer = cls(*init_inputs, **init_kwargs) |
|
except OSError: |
|
raise OSError( |
|
"Unable to load vocabulary from file. " |
|
"Please check that the provided vocabulary is accessible and not corrupted." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None) |
|
if special_tokens_map_file is not None: |
|
with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle: |
|
special_tokens_map = json.load(special_tokens_map_handle) |
|
for key, value in special_tokens_map.items(): |
|
if key in kwargs and kwargs[key]: |
|
|
|
|
|
|
|
continue |
|
|
|
if isinstance(value, dict): |
|
value = AddedToken(**value) |
|
elif isinstance(value, list): |
|
value = [AddedToken(**token) if isinstance(token, dict) else token for token in value] |
|
setattr(tokenizer, key, value) |
|
|
|
|
|
special_tokens = tokenizer.all_special_tokens |
|
if added_tokens_file is not None: |
|
with open(added_tokens_file, encoding="utf-8") as added_tokens_handle: |
|
added_tok_encoder = json.load(added_tokens_handle) |
|
|
|
|
|
added_tok_encoder_sorted = sorted(added_tok_encoder.items(), key=lambda x: x[1]) |
|
|
|
|
|
|
|
is_last_special = None |
|
tokens = [] |
|
|
|
for token, index in added_tok_encoder_sorted: |
|
current_index = len(tokenizer) + len(tokens) |
|
if has_tokenizer_file and index != current_index and tokenizer.convert_tokens_to_ids(token) != index: |
|
|
|
|
|
raise ValueError( |
|
f"Wrong index found for {token}: should be {tokenizer.convert_tokens_to_ids(token)} but found " |
|
f"{index}." |
|
) |
|
elif not has_tokenizer_file and index != current_index: |
|
|
|
|
|
raise ValueError( |
|
f"Non-consecutive added token '{token}' found. " |
|
f"Should have index {current_index} but has index {index} in saved vocabulary." |
|
) |
|
|
|
is_special = bool(token in special_tokens) |
|
if is_last_special is None or is_last_special == is_special: |
|
tokens.append(token) |
|
else: |
|
tokenizer.add_tokens(tokens, special_tokens=is_last_special) |
|
tokens = [token] |
|
is_last_special = is_special |
|
|
|
if tokens: |
|
tokenizer.add_tokens(tokens, special_tokens=is_last_special) |
|
|
|
|
|
added_tokens = tokenizer.sanitize_special_tokens() |
|
if added_tokens: |
|
logger.warning_advice( |
|
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are" |
|
" fine-tuned or trained." |
|
) |
|
|
|
return tokenizer |
|
|
|
@staticmethod |
|
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): |
|
|
|
|
|
|
|
|
|
return max_model_length |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
legacy_format: Optional[bool] = None, |
|
filename_prefix: Optional[str] = None, |
|
push_to_hub: bool = False, |
|
**kwargs, |
|
) -> Tuple[str]: |
|
""" |
|
Save the full tokenizer state. |
|
|
|
|
|
This method make sure the full tokenizer can then be re-loaded using the |
|
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method.. |
|
|
|
Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for |
|
instance, modifying `tokenizer.do_lower_case` after creation). |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved. |
|
legacy_format (`bool`, *optional*): |
|
Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON |
|
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate |
|
added_tokens files. |
|
|
|
If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with |
|
"slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be |
|
loaded in the corresponding "slow" tokenizer. |
|
|
|
If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value |
|
error is raised. |
|
filename_prefix (`str`, *optional*): |
|
A prefix to add to the names of the files saved by the tokenizer. |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
|
|
Returns: |
|
A tuple of `str`: The files saved. |
|
""" |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = self._create_repo(repo_id, **kwargs) |
|
files_timestamps = self._get_files_timestamps(save_directory) |
|
|
|
special_tokens_map_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE |
|
) |
|
tokenizer_config_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE |
|
) |
|
|
|
tokenizer_config = copy.deepcopy(self.init_kwargs) |
|
|
|
|
|
|
|
target_keys = ["model_max_length", "clean_up_tokenization_spaces"] |
|
for k in target_keys: |
|
if hasattr(self, k): |
|
tokenizer_config[k] = getattr(self, k) |
|
|
|
if len(self.init_inputs) > 0: |
|
tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs) |
|
for file_id in self.vocab_files_names.keys(): |
|
tokenizer_config.pop(file_id, None) |
|
|
|
|
|
def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True): |
|
if isinstance(obj, AddedToken): |
|
out = obj.__getstate__() |
|
if add_type_field: |
|
out["__type"] = "AddedToken" |
|
return out |
|
elif isinstance(obj, (list, tuple)): |
|
return [convert_added_tokens(o, add_type_field=add_type_field) for o in obj] |
|
elif isinstance(obj, dict): |
|
return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()} |
|
return obj |
|
|
|
|
|
tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True) |
|
|
|
|
|
tokenizer_class = self.__class__.__name__ |
|
|
|
if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast": |
|
tokenizer_class = tokenizer_class[:-4] |
|
tokenizer_config["tokenizer_class"] = tokenizer_class |
|
if getattr(self, "_auto_map", None) is not None: |
|
tokenizer_config["auto_map"] = self._auto_map |
|
if getattr(self, "_processor_class", None) is not None: |
|
tokenizer_config["processor_class"] = self._processor_class |
|
|
|
|
|
|
|
if self._auto_class is not None: |
|
custom_object_save(self, save_directory, config=tokenizer_config) |
|
|
|
|
|
if "name_or_path" in tokenizer_config: |
|
tokenizer_config.pop("name_or_path") |
|
tokenizer_config.pop("special_tokens_map_file", None) |
|
|
|
with open(tokenizer_config_file, "w", encoding="utf-8") as f: |
|
out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n" |
|
f.write(out_str) |
|
logger.info(f"tokenizer config file saved in {tokenizer_config_file}") |
|
|
|
|
|
write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False) |
|
with open(special_tokens_map_file, "w", encoding="utf-8") as f: |
|
out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n" |
|
f.write(out_str) |
|
logger.info(f"Special tokens file saved in {special_tokens_map_file}") |
|
|
|
file_names = (tokenizer_config_file, special_tokens_map_file) |
|
|
|
save_files = self._save_pretrained( |
|
save_directory=save_directory, |
|
file_names=file_names, |
|
legacy_format=legacy_format, |
|
filename_prefix=filename_prefix, |
|
) |
|
|
|
if push_to_hub: |
|
self._upload_modified_files( |
|
save_directory, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=kwargs.get("use_auth_token"), |
|
) |
|
|
|
return save_files |
|
|
|
def _save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
file_names: Tuple[str], |
|
legacy_format: Optional[bool] = None, |
|
filename_prefix: Optional[str] = None, |
|
) -> Tuple[str]: |
|
""" |
|
Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens. |
|
|
|
Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the |
|
specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`] |
|
""" |
|
if legacy_format is False: |
|
raise ValueError( |
|
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format." |
|
) |
|
|
|
save_directory = str(save_directory) |
|
|
|
added_tokens_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE |
|
) |
|
added_vocab = self.get_added_vocab() |
|
if added_vocab: |
|
with open(added_tokens_file, "w", encoding="utf-8") as f: |
|
out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n" |
|
f.write(out_str) |
|
logger.info(f"added tokens file saved in {added_tokens_file}") |
|
|
|
vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix) |
|
|
|
return file_names + vocab_files + (added_tokens_file,) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save only the vocabulary of the tokenizer (vocabulary + added tokens). |
|
|
|
This method won't save the configuration and special token mappings of the tokenizer. Use |
|
[`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
filename_prefix (`str`, *optional*): |
|
An optional prefix to add to the named of the saved files. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
raise NotImplementedError |
|
|
|
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: |
|
""" |
|
Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`. |
|
|
|
Args: |
|
text (`str`): |
|
The sequence to be encoded. |
|
pair (`str`, *optional*): |
|
A second sequence to be encoded with the first. |
|
add_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add the special tokens associated with the corresponding model. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific encode method. See details in |
|
[`~PreTrainedTokenizerBase.__call__`] |
|
|
|
Returns: |
|
`List[str]`: The list of tokens. |
|
""" |
|
raise NotImplementedError |
|
|
|
@add_end_docstrings( |
|
ENCODE_KWARGS_DOCSTRING, |
|
""" |
|
**kwargs: Passed along to the `.tokenize()` method. |
|
""", |
|
""" |
|
Returns: |
|
`List[int]`, `torch.Tensor`, `tf.Tensor` or `np.ndarray`: The tokenized ids of the text. |
|
""", |
|
) |
|
def encode( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, EncodedInput], |
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> List[int]: |
|
""" |
|
Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary. |
|
|
|
Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`. |
|
|
|
Args: |
|
text (`str`, `List[str]` or `List[int]`): |
|
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the |
|
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` |
|
method). |
|
text_pair (`str`, `List[str]` or `List[int]`, *optional*): |
|
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using |
|
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` |
|
method). |
|
""" |
|
encoded_inputs = self.encode_plus( |
|
text, |
|
text_pair=text_pair, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
return_tensors=return_tensors, |
|
**kwargs, |
|
) |
|
|
|
return encoded_inputs["input_ids"] |
|
|
|
def num_special_tokens_to_add(self, pair: bool = False) -> int: |
|
raise NotImplementedError |
|
|
|
def _get_padding_truncation_strategies( |
|
self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs |
|
): |
|
""" |
|
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy |
|
and pad_to_max_length) and behaviors. |
|
""" |
|
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate") |
|
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False) |
|
|
|
|
|
|
|
if max_length is not None and padding is False and truncation is None: |
|
if verbose: |
|
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False): |
|
logger.warning( |
|
"Truncation was not explicitly activated but `max_length` is provided a specific value, please" |
|
" use `truncation=True` to explicitly truncate examples to max length. Defaulting to" |
|
" 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the" |
|
" tokenizer you can select this strategy more precisely by providing a specific strategy to" |
|
" `truncation`." |
|
) |
|
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True |
|
truncation = "longest_first" |
|
|
|
|
|
if padding is False and old_pad_to_max_length: |
|
if verbose: |
|
warnings.warn( |
|
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, " |
|
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or " |
|
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific " |
|
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the " |
|
"maximal input size of the model (e.g. 512 for Bert).", |
|
FutureWarning, |
|
) |
|
if max_length is None: |
|
padding_strategy = PaddingStrategy.LONGEST |
|
else: |
|
padding_strategy = PaddingStrategy.MAX_LENGTH |
|
elif padding is not False: |
|
if padding is True: |
|
if verbose: |
|
if max_length is not None and ( |
|
truncation is None or truncation is False or truncation == "do_not_truncate" |
|
): |
|
warnings.warn( |
|
"`max_length` is ignored when `padding`=`True` and there is no truncation strategy. " |
|
"To pad to max length, use `padding='max_length'`." |
|
) |
|
if old_pad_to_max_length is not False: |
|
warnings.warn("Though `pad_to_max_length` = `True`, it is ignored because `padding`=`True`.") |
|
padding_strategy = PaddingStrategy.LONGEST |
|
elif not isinstance(padding, PaddingStrategy): |
|
padding_strategy = PaddingStrategy(padding) |
|
elif isinstance(padding, PaddingStrategy): |
|
padding_strategy = padding |
|
else: |
|
padding_strategy = PaddingStrategy.DO_NOT_PAD |
|
|
|
|
|
if truncation is None and old_truncation_strategy != "do_not_truncate": |
|
if verbose: |
|
warnings.warn( |
|
"The `truncation_strategy` argument is deprecated and will be removed in a future version, use" |
|
" `truncation=True` to truncate examples to a max length. You can give a specific length with" |
|
" `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input" |
|
" size of the model (e.g. 512 for Bert). If you have pairs of inputs, you can give a specific" |
|
" truncation strategy selected among `truncation='only_first'` (will only truncate the first" |
|
" sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the" |
|
" pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence" |
|
" in the pairs).", |
|
FutureWarning, |
|
) |
|
truncation_strategy = TruncationStrategy(old_truncation_strategy) |
|
elif truncation is not False and truncation is not None: |
|
if truncation is True: |
|
truncation_strategy = ( |
|
TruncationStrategy.LONGEST_FIRST |
|
) |
|
elif not isinstance(truncation, TruncationStrategy): |
|
truncation_strategy = TruncationStrategy(truncation) |
|
elif isinstance(truncation, TruncationStrategy): |
|
truncation_strategy = truncation |
|
else: |
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE |
|
|
|
|
|
if max_length is None: |
|
if padding_strategy == PaddingStrategy.MAX_LENGTH: |
|
if self.model_max_length > LARGE_INTEGER: |
|
if verbose: |
|
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False): |
|
logger.warning( |
|
"Asking to pad to max_length but no maximum length is provided and the model has no" |
|
" predefined maximum length. Default to no padding." |
|
) |
|
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True |
|
padding_strategy = PaddingStrategy.DO_NOT_PAD |
|
else: |
|
max_length = self.model_max_length |
|
|
|
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE: |
|
if self.model_max_length > LARGE_INTEGER: |
|
if verbose: |
|
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False): |
|
logger.warning( |
|
"Asking to truncate to max_length but no maximum length is provided and the model has" |
|
" no predefined maximum length. Default to no truncation." |
|
) |
|
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True |
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE |
|
else: |
|
max_length = self.model_max_length |
|
|
|
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0): |
|
raise ValueError( |
|
"Asking to pad but the tokenizer does not have a padding token. " |
|
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` " |
|
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`." |
|
) |
|
|
|
|
|
if ( |
|
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE |
|
and padding_strategy != PaddingStrategy.DO_NOT_PAD |
|
and pad_to_multiple_of is not None |
|
and max_length is not None |
|
and (max_length % pad_to_multiple_of != 0) |
|
): |
|
raise ValueError( |
|
"Truncation and padding are both activated but " |
|
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})." |
|
) |
|
|
|
return padding_strategy, truncation_strategy, max_length, kwargs |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, |
|
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
text_pair_target: Optional[ |
|
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] |
|
] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of |
|
sequences. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`, *optional*): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): |
|
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a |
|
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), |
|
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): |
|
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a |
|
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), |
|
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
""" |
|
|
|
all_kwargs = { |
|
"add_special_tokens": add_special_tokens, |
|
"padding": padding, |
|
"truncation": truncation, |
|
"max_length": max_length, |
|
"stride": stride, |
|
"is_split_into_words": is_split_into_words, |
|
"pad_to_multiple_of": pad_to_multiple_of, |
|
"return_tensors": return_tensors, |
|
"return_token_type_ids": return_token_type_ids, |
|
"return_attention_mask": return_attention_mask, |
|
"return_overflowing_tokens": return_overflowing_tokens, |
|
"return_special_tokens_mask": return_special_tokens_mask, |
|
"return_offsets_mapping": return_offsets_mapping, |
|
"return_length": return_length, |
|
"verbose": verbose, |
|
} |
|
all_kwargs.update(kwargs) |
|
if text is None and text_target is None: |
|
raise ValueError("You need to specify either `text` or `text_target`.") |
|
if text is not None: |
|
|
|
|
|
if not self._in_target_context_manager: |
|
self._switch_to_input_mode() |
|
encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) |
|
if text_target is not None: |
|
self._switch_to_target_mode() |
|
target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **all_kwargs) |
|
|
|
self._switch_to_input_mode() |
|
|
|
if text_target is None: |
|
return encodings |
|
elif text is None: |
|
return target_encodings |
|
else: |
|
encodings["labels"] = target_encodings["input_ids"] |
|
return encodings |
|
|
|
def _call_one( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
|
|
def _is_valid_text_input(t): |
|
if isinstance(t, str): |
|
|
|
return True |
|
elif isinstance(t, (list, tuple)): |
|
|
|
if len(t) == 0: |
|
|
|
return True |
|
elif isinstance(t[0], str): |
|
|
|
return True |
|
elif isinstance(t[0], (list, tuple)): |
|
|
|
return len(t[0]) == 0 or isinstance(t[0][0], str) |
|
else: |
|
return False |
|
else: |
|
return False |
|
|
|
if not _is_valid_text_input(text): |
|
raise ValueError( |
|
"text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) " |
|
"or `List[List[str]]` (batch of pretokenized examples)." |
|
) |
|
|
|
if text_pair is not None and not _is_valid_text_input(text_pair): |
|
raise ValueError( |
|
"text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) " |
|
"or `List[List[str]]` (batch of pretokenized examples)." |
|
) |
|
|
|
if is_split_into_words: |
|
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) |
|
else: |
|
is_batched = isinstance(text, (list, tuple)) |
|
|
|
if is_batched: |
|
if isinstance(text_pair, str): |
|
raise TypeError( |
|
"when tokenizing batches of text, `text_pair` must be a list or tuple with the same length as" |
|
" `text`." |
|
) |
|
if text_pair is not None and len(text) != len(text_pair): |
|
raise ValueError( |
|
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" |
|
f" {len(text_pair)}." |
|
) |
|
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text |
|
return self.batch_encode_plus( |
|
batch_text_or_text_pairs=batch_text_or_text_pairs, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
is_split_into_words=is_split_into_words, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
else: |
|
return self.encode_plus( |
|
text=text, |
|
text_pair=text_pair, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
is_split_into_words=is_split_into_words, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def encode_plus( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, EncodedInput], |
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Tokenize and prepare for the model a sequence or a pair of sequences. |
|
|
|
<Tip warning={true}> |
|
|
|
This method is deprecated, `__call__` should be used instead. |
|
|
|
</Tip> |
|
|
|
Args: |
|
text (`str`, `List[str]` or `List[int]` (the latter only for not-fast tokenizers)): |
|
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the |
|
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` |
|
method). |
|
text_pair (`str`, `List[str]` or `List[int]`, *optional*): |
|
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using |
|
the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` |
|
method). |
|
""" |
|
|
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._encode_plus( |
|
text=text, |
|
text_pair=text_pair, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
stride=stride, |
|
is_split_into_words=is_split_into_words, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _encode_plus( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, EncodedInput], |
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
raise NotImplementedError |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def batch_encode_plus( |
|
self, |
|
batch_text_or_text_pairs: Union[ |
|
List[TextInput], |
|
List[TextInputPair], |
|
List[PreTokenizedInput], |
|
List[PreTokenizedInputPair], |
|
List[EncodedInput], |
|
List[EncodedInputPair], |
|
], |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Tokenize and prepare for the model a list of sequences or a list of pairs of sequences. |
|
|
|
<Tip warning={true}> |
|
|
|
This method is deprecated, `__call__` should be used instead. |
|
|
|
</Tip> |
|
|
|
Args: |
|
batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`): |
|
Batch of sequences or pair of sequences to be encoded. This can be a list of |
|
string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see |
|
details in `encode_plus`). |
|
""" |
|
|
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._batch_encode_plus( |
|
batch_text_or_text_pairs=batch_text_or_text_pairs, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
stride=stride, |
|
is_split_into_words=is_split_into_words, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _batch_encode_plus( |
|
self, |
|
batch_text_or_text_pairs: Union[ |
|
List[TextInput], |
|
List[TextInputPair], |
|
List[PreTokenizedInput], |
|
List[PreTokenizedInputPair], |
|
List[EncodedInput], |
|
List[EncodedInputPair], |
|
], |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
is_split_into_words: bool = False, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
raise NotImplementedError |
|
|
|
def pad( |
|
self, |
|
encoded_inputs: Union[ |
|
BatchEncoding, |
|
List[BatchEncoding], |
|
Dict[str, EncodedInput], |
|
Dict[str, List[EncodedInput]], |
|
List[Dict[str, EncodedInput]], |
|
], |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
verbose: bool = True, |
|
) -> BatchEncoding: |
|
""" |
|
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length |
|
in the batch. |
|
|
|
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, |
|
`self.pad_token_id` and `self.pad_token_type_id`). |
|
|
|
Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the |
|
text followed by a call to the `pad` method to get a padded encoding. |
|
|
|
<Tip> |
|
|
|
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the |
|
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of |
|
PyTorch tensors, you will lose the specific device of your tensors however. |
|
|
|
</Tip> |
|
|
|
Args: |
|
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): |
|
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of |
|
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, |
|
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader |
|
collate function. |
|
|
|
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see |
|
the note above for the return type. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the sequence to a multiple of the provided value. |
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta). |
|
return_attention_mask (`bool`, *optional*): |
|
Whether to return the attention mask. If left to the default, will return the attention mask according |
|
to the specific tokenizer's default, defined by the `return_outputs` attribute. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
verbose (`bool`, *optional*, defaults to `True`): |
|
Whether or not to print more information and warnings. |
|
""" |
|
if self.__class__.__name__.endswith("Fast"): |
|
if not self.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False): |
|
logger.warning_advice( |
|
f"You're using a {self.__class__.__name__} tokenizer. Please note that with a fast tokenizer," |
|
" using the `__call__` method is faster than using a method to encode the text followed by a call" |
|
" to the `pad` method to get a padded encoding." |
|
) |
|
self.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True |
|
|
|
|
|
|
|
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): |
|
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} |
|
|
|
|
|
if self.model_input_names[0] not in encoded_inputs: |
|
raise ValueError( |
|
"You should supply an encoding or a list of encodings to this method " |
|
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" |
|
) |
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
|
|
if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0): |
|
if return_attention_mask: |
|
encoded_inputs["attention_mask"] = [] |
|
return encoded_inputs |
|
|
|
|
|
|
|
|
|
|
|
first_element = required_input[0] |
|
if isinstance(first_element, (list, tuple)): |
|
|
|
for item in required_input: |
|
if len(item) != 0: |
|
first_element = item[0] |
|
break |
|
|
|
if not isinstance(first_element, (int, list, tuple)): |
|
if is_tf_tensor(first_element): |
|
return_tensors = "tf" if return_tensors is None else return_tensors |
|
elif is_torch_tensor(first_element): |
|
return_tensors = "pt" if return_tensors is None else return_tensors |
|
elif isinstance(first_element, np.ndarray): |
|
return_tensors = "np" if return_tensors is None else return_tensors |
|
else: |
|
raise ValueError( |
|
f"type of {first_element} unknown: {type(first_element)}. " |
|
"Should be one of a python, numpy, pytorch or tensorflow object." |
|
) |
|
|
|
for key, value in encoded_inputs.items(): |
|
encoded_inputs[key] = to_py_obj(value) |
|
|
|
|
|
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( |
|
padding=padding, max_length=max_length, verbose=verbose |
|
) |
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
if required_input and not isinstance(required_input[0], (list, tuple)): |
|
encoded_inputs = self._pad( |
|
encoded_inputs, |
|
max_length=max_length, |
|
padding_strategy=padding_strategy, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
return BatchEncoding(encoded_inputs, tensor_type=return_tensors) |
|
|
|
batch_size = len(required_input) |
|
assert all( |
|
len(v) == batch_size for v in encoded_inputs.values() |
|
), "Some items in the output dictionary have a different batch size than others." |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = max(len(inputs) for inputs in required_input) |
|
padding_strategy = PaddingStrategy.MAX_LENGTH |
|
|
|
batch_outputs = {} |
|
for i in range(batch_size): |
|
inputs = {k: v[i] for k, v in encoded_inputs.items()} |
|
outputs = self._pad( |
|
inputs, |
|
max_length=max_length, |
|
padding_strategy=padding_strategy, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
for key, value in outputs.items(): |
|
if key not in batch_outputs: |
|
batch_outputs[key] = [] |
|
batch_outputs[key].append(value) |
|
|
|
return BatchEncoding(batch_outputs, tensor_type=return_tensors) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create the token type IDs corresponding to the sequences passed. [What are token type |
|
IDs?](../glossary#token-type-ids) |
|
|
|
Should be overridden in a subclass if the model has a special way of building those. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): The first tokenized sequence. |
|
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. |
|
|
|
Returns: |
|
`List[int]`: The token type ids. |
|
""" |
|
if token_ids_1 is None: |
|
return len(token_ids_0) * [0] |
|
return [0] * len(token_ids_0) + [1] * len(token_ids_1) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. |
|
|
|
This implementation does not add special tokens and this method should be overridden in a subclass. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): The first tokenized sequence. |
|
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. |
|
|
|
Returns: |
|
`List[int]`: The model input with special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return token_ids_0 |
|
return token_ids_0 + token_ids_1 |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def prepare_for_model( |
|
self, |
|
ids: List[int], |
|
pair_ids: Optional[List[int]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
prepend_batch_axis: bool = False, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It |
|
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and |
|
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* |
|
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return |
|
overflowing tokens. Such a combination of arguments will raise an error. |
|
|
|
Args: |
|
ids (`List[int]`): |
|
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and |
|
`convert_tokens_to_ids` methods. |
|
pair_ids (`List[int]`, *optional*): |
|
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` |
|
and `convert_tokens_to_ids` methods. |
|
""" |
|
|
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
pair = bool(pair_ids is not None) |
|
len_ids = len(ids) |
|
len_pair_ids = len(pair_ids) if pair else 0 |
|
|
|
if return_token_type_ids and not add_special_tokens: |
|
raise ValueError( |
|
"Asking to return token_type_ids while setting add_special_tokens to False " |
|
"results in an undefined behavior. Please set add_special_tokens to True or " |
|
"set return_token_type_ids to None." |
|
) |
|
|
|
if ( |
|
return_overflowing_tokens |
|
and truncation_strategy == TruncationStrategy.LONGEST_FIRST |
|
and pair_ids is not None |
|
): |
|
raise ValueError( |
|
"Not possible to return overflowing tokens for pair of sequences with the " |
|
"`longest_first`. Please select another truncation strategy than `longest_first`, " |
|
"for instance `only_second` or `only_first`." |
|
) |
|
|
|
|
|
if return_token_type_ids is None: |
|
return_token_type_ids = "token_type_ids" in self.model_input_names |
|
if return_attention_mask is None: |
|
return_attention_mask = "attention_mask" in self.model_input_names |
|
|
|
encoded_inputs = {} |
|
|
|
|
|
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) |
|
|
|
|
|
overflowing_tokens = [] |
|
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: |
|
ids, pair_ids, overflowing_tokens = self.truncate_sequences( |
|
ids, |
|
pair_ids=pair_ids, |
|
num_tokens_to_remove=total_len - max_length, |
|
truncation_strategy=truncation_strategy, |
|
stride=stride, |
|
) |
|
|
|
if return_overflowing_tokens: |
|
encoded_inputs["overflowing_tokens"] = overflowing_tokens |
|
encoded_inputs["num_truncated_tokens"] = total_len - max_length |
|
|
|
|
|
if add_special_tokens: |
|
sequence = self.build_inputs_with_special_tokens(ids, pair_ids) |
|
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) |
|
else: |
|
sequence = ids + pair_ids if pair else ids |
|
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) |
|
|
|
|
|
encoded_inputs["input_ids"] = sequence |
|
if return_token_type_ids: |
|
encoded_inputs["token_type_ids"] = token_type_ids |
|
if return_special_tokens_mask: |
|
if add_special_tokens: |
|
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) |
|
else: |
|
encoded_inputs["special_tokens_mask"] = [0] * len(sequence) |
|
|
|
|
|
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) |
|
|
|
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: |
|
encoded_inputs = self.pad( |
|
encoded_inputs, |
|
max_length=max_length, |
|
padding=padding_strategy.value, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
if return_length: |
|
encoded_inputs["length"] = len(encoded_inputs["input_ids"]) |
|
|
|
batch_outputs = BatchEncoding( |
|
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis |
|
) |
|
|
|
return batch_outputs |
|
|
|
def truncate_sequences( |
|
self, |
|
ids: List[int], |
|
pair_ids: Optional[List[int]] = None, |
|
num_tokens_to_remove: int = 0, |
|
truncation_strategy: Union[str, TruncationStrategy] = "longest_first", |
|
stride: int = 0, |
|
) -> Tuple[List[int], List[int], List[int]]: |
|
""" |
|
Truncates a sequence pair in-place following the strategy. |
|
|
|
Args: |
|
ids (`List[int]`): |
|
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and |
|
`convert_tokens_to_ids` methods. |
|
pair_ids (`List[int]`, *optional*): |
|
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` |
|
and `convert_tokens_to_ids` methods. |
|
num_tokens_to_remove (`int`, *optional*, defaults to 0): |
|
Number of tokens to remove using the truncation strategy. |
|
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): |
|
The strategy to follow for truncation. Can be: |
|
|
|
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will truncate |
|
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a |
|
batch of pairs) is provided. |
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater |
|
than the model maximum admissible input size). |
|
stride (`int`, *optional*, defaults to 0): |
|
If set to a positive number, the overflowing tokens returned will contain some tokens from the main |
|
sequence returned. The value of this argument defines the number of additional tokens. |
|
|
|
Returns: |
|
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of |
|
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair |
|
of sequences (or a batch of pairs) is provided. |
|
""" |
|
if num_tokens_to_remove <= 0: |
|
return ids, pair_ids, [] |
|
|
|
if not isinstance(truncation_strategy, TruncationStrategy): |
|
truncation_strategy = TruncationStrategy(truncation_strategy) |
|
|
|
overflowing_tokens = [] |
|
if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( |
|
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None |
|
): |
|
if len(ids) > num_tokens_to_remove: |
|
window_len = min(len(ids), stride + num_tokens_to_remove) |
|
if self.truncation_side == "left": |
|
overflowing_tokens = ids[:window_len] |
|
ids = ids[num_tokens_to_remove:] |
|
elif self.truncation_side == "right": |
|
overflowing_tokens = ids[-window_len:] |
|
ids = ids[:-num_tokens_to_remove] |
|
else: |
|
raise ValueError(f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'.") |
|
|
|
else: |
|
error_msg = ( |
|
f"We need to remove {num_tokens_to_remove} to truncate the input " |
|
f"but the first sequence has a length {len(ids)}. " |
|
) |
|
if truncation_strategy == TruncationStrategy.ONLY_FIRST: |
|
error_msg = ( |
|
error_msg + "Please select another truncation strategy than " |
|
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." |
|
) |
|
logger.error(error_msg) |
|
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: |
|
logger.warning( |
|
"Be aware, overflowing tokens are not returned for the setting you have chosen," |
|
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " |
|
"truncation strategy. So the returned list will always be empty even if some " |
|
"tokens have been removed." |
|
) |
|
for _ in range(num_tokens_to_remove): |
|
if pair_ids is None or len(ids) > len(pair_ids): |
|
if self.truncation_side == "right": |
|
ids = ids[:-1] |
|
elif self.truncation_side == "left": |
|
ids = ids[1:] |
|
else: |
|
raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) |
|
else: |
|
if self.truncation_side == "right": |
|
pair_ids = pair_ids[:-1] |
|
elif self.truncation_side == "left": |
|
pair_ids = pair_ids[1:] |
|
else: |
|
raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) |
|
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: |
|
if len(pair_ids) > num_tokens_to_remove: |
|
window_len = min(len(pair_ids), stride + num_tokens_to_remove) |
|
if self.truncation_side == "right": |
|
overflowing_tokens = pair_ids[-window_len:] |
|
pair_ids = pair_ids[:-num_tokens_to_remove] |
|
elif self.truncation_side == "left": |
|
overflowing_tokens = pair_ids[:window_len] |
|
pair_ids = pair_ids[num_tokens_to_remove:] |
|
else: |
|
raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) |
|
else: |
|
logger.error( |
|
f"We need to remove {num_tokens_to_remove} to truncate the input " |
|
f"but the second sequence has a length {len(pair_ids)}. " |
|
f"Please select another truncation strategy than {truncation_strategy}, " |
|
"for instance 'longest_first' or 'only_first'." |
|
) |
|
|
|
return (ids, pair_ids, overflowing_tokens) |
|
|
|
def _pad( |
|
self, |
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
) -> dict: |
|
""" |
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) |
|
|
|
Args: |
|
encoded_inputs: |
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). |
|
max_length: maximum length of the returned list and optionally padding length (see below). |
|
Will truncate by taking into account the special tokens. |
|
padding_strategy: PaddingStrategy to use for padding. |
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch |
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) |
|
- PaddingStrategy.DO_NOT_PAD: Do not pad |
|
The tokenizer padding sides are defined in self.padding_side: |
|
|
|
- 'left': pads on the left of the sequences |
|
- 'right': pads on the right of the sequences |
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta). |
|
return_attention_mask: |
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics) |
|
""" |
|
|
|
if return_attention_mask is None: |
|
return_attention_mask = "attention_mask" in self.model_input_names |
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = len(required_input) |
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length |
|
|
|
|
|
if return_attention_mask and "attention_mask" not in encoded_inputs: |
|
encoded_inputs["attention_mask"] = [1] * len(required_input) |
|
|
|
if needs_to_be_padded: |
|
difference = max_length - len(required_input) |
|
|
|
if self.padding_side == "right": |
|
if return_attention_mask: |
|
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference |
|
if "token_type_ids" in encoded_inputs: |
|
encoded_inputs["token_type_ids"] = ( |
|
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference |
|
) |
|
if "special_tokens_mask" in encoded_inputs: |
|
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference |
|
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference |
|
elif self.padding_side == "left": |
|
if return_attention_mask: |
|
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] |
|
if "token_type_ids" in encoded_inputs: |
|
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ |
|
"token_type_ids" |
|
] |
|
if "special_tokens_mask" in encoded_inputs: |
|
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] |
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input |
|
else: |
|
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) |
|
|
|
return encoded_inputs |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
""" |
|
Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we |
|
often want to remove sub-word tokenization artifacts at the same time. |
|
|
|
Args: |
|
tokens (`List[str]`): The token to join in a string. |
|
|
|
Returns: |
|
`str`: The joined tokens. |
|
""" |
|
raise NotImplementedError |
|
|
|
def batch_decode( |
|
self, |
|
sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> List[str]: |
|
""" |
|
Convert a list of lists of token ids into a list of strings by calling decode. |
|
|
|
Args: |
|
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`List[str]`: The list of decoded sentences. |
|
""" |
|
return [ |
|
self.decode( |
|
seq, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
for seq in sequences |
|
] |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> str: |
|
""" |
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special |
|
tokens and clean up tokenization spaces. |
|
|
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. |
|
|
|
Args: |
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`str`: The decoded sentence. |
|
""" |
|
|
|
token_ids = to_py_obj(token_ids) |
|
|
|
return self._decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> str: |
|
raise NotImplementedError |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids of the first sequence. |
|
token_ids_1 (`List[int]`, *optional*): |
|
List of ids of the second sequence. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
assert already_has_special_tokens and token_ids_1 is None, ( |
|
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. " |
|
"Please use a slow (full python) tokenizer to activate this argument. " |
|
"Or set `return_special_tokens_mask=True` when calling the encoding method " |
|
"to get the special tokens mask in any tokenizer. " |
|
) |
|
|
|
all_special_ids = self.all_special_ids |
|
|
|
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0] |
|
|
|
return special_tokens_mask |
|
|
|
@staticmethod |
|
def clean_up_tokenization(out_string: str) -> str: |
|
""" |
|
Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms. |
|
|
|
Args: |
|
out_string (`str`): The text to clean up. |
|
|
|
Returns: |
|
`str`: The cleaned-up string. |
|
""" |
|
out_string = ( |
|
out_string.replace(" .", ".") |
|
.replace(" ?", "?") |
|
.replace(" !", "!") |
|
.replace(" ,", ",") |
|
.replace(" ' ", "'") |
|
.replace(" n't", "n't") |
|
.replace(" 'm", "'m") |
|
.replace(" 's", "'s") |
|
.replace(" 've", "'ve") |
|
.replace(" 're", "'re") |
|
) |
|
return out_string |
|
|
|
def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool): |
|
""" |
|
Depending on the input and internal state we might trigger a warning about a sequence that is too long for its |
|
corresponding model |
|
|
|
Args: |
|
ids (`List[str]`): The ids produced by the tokenization |
|
max_length (`int`, *optional*): The max_length desired (does not trigger a warning if it is set) |
|
verbose (`bool`): Whether or not to print more information and warnings. |
|
|
|
""" |
|
if max_length is None and len(ids) > self.model_max_length and verbose: |
|
if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): |
|
logger.warning( |
|
"Token indices sequence length is longer than the specified maximum sequence length " |
|
f"for this model ({len(ids)} > {self.model_max_length}). Running this sequence through the model " |
|
"will result in indexing errors" |
|
) |
|
self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True |
|
|
|
def _switch_to_input_mode(self): |
|
""" |
|
Private method to put the tokenizer in input mode (when it has different modes for input/outputs) |
|
""" |
|
pass |
|
|
|
def _switch_to_target_mode(self): |
|
""" |
|
Private method to put the tokenizer in target mode (when it has different modes for input/outputs) |
|
""" |
|
pass |
|
|
|
@contextmanager |
|
def as_target_tokenizer(self): |
|
""" |
|
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to |
|
sequence-to-sequence models that need a slightly different processing for the labels. |
|
""" |
|
warnings.warn( |
|
"`as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your " |
|
"labels by using the argument `text_target` of the regular `__call__` method (either in the same call as " |
|
"your input texts if you use the same keyword arguments, or in a separate call." |
|
) |
|
self._switch_to_target_mode() |
|
self._in_target_context_manager = True |
|
yield |
|
self._in_target_context_manager = False |
|
self._switch_to_input_mode() |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="AutoTokenizer"): |
|
""" |
|
Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the |
|
library are already mapped with `AutoTokenizer`. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is experimental and may have some slight breaking changes in the next releases. |
|
|
|
</Tip> |
|
|
|
Args: |
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`): |
|
The auto class to register this new tokenizer with. |
|
""" |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
def prepare_seq2seq_batch( |
|
self, |
|
src_texts: List[str], |
|
tgt_texts: Optional[List[str]] = None, |
|
max_length: Optional[int] = None, |
|
max_target_length: Optional[int] = None, |
|
padding: str = "longest", |
|
return_tensors: str = None, |
|
truncation: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Prepare model inputs for translation. For best performance, translate one sentence at a time. |
|
|
|
Arguments: |
|
src_texts (`List[str]`): |
|
List of documents to summarize or source language texts. |
|
tgt_texts (`list`, *optional*): |
|
List of summaries or target language texts. |
|
max_length (`int`, *optional*): |
|
Controls the maximum length for encoder inputs (documents to summarize or source language texts) If |
|
left unset or set to `None`, this will use the predefined model maximum length if a maximum length is |
|
required by one of the truncation/padding parameters. If the model has no specific maximum input length |
|
(like XLNet) truncation/padding to a maximum length will be deactivated. |
|
max_target_length (`int`, *optional*): |
|
Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set |
|
to `None`, this will use the max_length value. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Activates and controls padding. Accepts the following values: |
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `True`): |
|
Activates and controls truncation. Accepts the following values: |
|
|
|
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or |
|
to the maximum acceptable input length for the model if that argument is not provided. This will |
|
truncate token by token, removing a token from the longest sequence in the pair if a pair of |
|
sequences (or a batch of pairs) is provided. |
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths |
|
greater than the model maximum admissible input size). |
|
**kwargs: |
|
Additional keyword arguments passed along to `self.__call__`. |
|
|
|
Return: |
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to the encoder. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model. |
|
- **labels** -- List of token ids for tgt_texts. |
|
|
|
The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if tgt_texts is passed. |
|
Otherwise, input_ids, attention_mask will be the only keys. |
|
""" |
|
|
|
formatted_warning = """ |
|
`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of HuggingFace Transformers. Use the regular |
|
`__call__` method to prepare your inputs and targets. |
|
|
|
Here is a short example: |
|
|
|
model_inputs = tokenizer(src_texts, text_target=tgt_texts, ...) |
|
|
|
If you either need to use different keyword arguments for the source and target texts, you should do two calls like |
|
this: |
|
|
|
model_inputs = tokenizer(src_texts, ...) |
|
labels = tokenizer(text_target=tgt_texts, ...) |
|
model_inputs["labels"] = labels["input_ids"] |
|
|
|
See the documentation of your specific tokenizer for more details on the specific arguments to the tokenizer of choice. |
|
For a more complete example, see the implementation of `prepare_seq2seq_batch`. |
|
""" |
|
warnings.warn(formatted_warning, FutureWarning) |
|
|
|
kwargs.pop("src_lang", None) |
|
kwargs.pop("tgt_lang", None) |
|
if max_length is None: |
|
max_length = self.model_max_length |
|
model_inputs = self( |
|
src_texts, |
|
add_special_tokens=True, |
|
return_tensors=return_tensors, |
|
max_length=max_length, |
|
padding=padding, |
|
truncation=truncation, |
|
**kwargs, |
|
) |
|
if tgt_texts is None: |
|
return model_inputs |
|
|
|
if max_target_length is None: |
|
max_target_length = max_length |
|
with self.as_target_tokenizer(): |
|
labels = self( |
|
tgt_texts, |
|
add_special_tokens=True, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
max_length=max_target_length, |
|
truncation=truncation, |
|
**kwargs, |
|
) |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
|
|
def get_fast_tokenizer_file(tokenization_files: List[str]) -> str: |
|
""" |
|
Get the tokenization file to use for this version of transformers. |
|
|
|
Args: |
|
tokenization_files (`List[str]`): The list of available configuration files. |
|
|
|
Returns: |
|
`str`: The tokenization file to use. |
|
""" |
|
tokenizer_files_map = {} |
|
for file_name in tokenization_files: |
|
search = _re_tokenizer_file.search(file_name) |
|
if search is not None: |
|
v = search.groups()[0] |
|
tokenizer_files_map[v] = file_name |
|
available_versions = sorted(tokenizer_files_map.keys()) |
|
|
|
|
|
tokenizer_file = FULL_TOKENIZER_FILE |
|
transformers_version = version.parse(__version__) |
|
for v in available_versions: |
|
if version.parse(v) <= transformers_version: |
|
tokenizer_file = tokenizer_files_map[v] |
|
else: |
|
|
|
break |
|
|
|
return tokenizer_file |
|
|
|
|
|
|
|
PreTrainedTokenizerBase.push_to_hub = copy_func(PreTrainedTokenizerBase.push_to_hub) |
|
if PreTrainedTokenizerBase.push_to_hub.__doc__ is not None: |
|
PreTrainedTokenizerBase.push_to_hub.__doc__ = PreTrainedTokenizerBase.push_to_hub.__doc__.format( |
|
object="tokenizer", object_class="AutoTokenizer", object_files="tokenizer files" |
|
) |
|
|