jina-clip-v2 / README.md
bwang0911's picture
fix: formating in readme
479b40c verified
|
raw
history blame
9.48 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
tags:
  - xlm-roberta
  - eva02
  - clip
  - feature-extraction
  - sentence-similarity
  - retrieval
  - multimodal
  - multi-modal
  - crossmodal
  - cross-modal
  - mteb
  - clip-benchmark
  - vidore
  - transformers
  - sentence-transformers
  - onnx
  - safetensors
  - transformers.js
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
inference: false



Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The embedding set trained by Jina AI.

Jina CLIP v2: Multilingual Multimodal Embeddings for Texts and Images

Quick Start

Blog | Azure | AWS SageMaker | API

Intended Usage & Model Info

jina-clip-v2 is a state-of-the-art multilingual and multimodal (text-image) embedding model. It is a successor to the jina-clip-v1 model and brings new features and capabilities, such as:

  • support for multiple languages - the text tower is trained on 89 languages with tuning focus on Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, Georgian, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu, and Vietnamese.
  • embedding truncation on both image and text vectors - both towers are trained using Matryoshka Representation Learning which enables slicing the output vectors and consequently computation and storage costs.
  • visual document retrieval performance gains - with an image resolution of 512 (compared to 224 on jina-clip-v1) the image tower can now capture finer visual details. This feature along with a more diverse training set enable the model to perform much better on visual document retrieval tasks. Due to this jina-clip-v2 can be used as an image encoder in vLLM retriever architectures.

Similar to our predecessor model, jina-clip-v2 bridges the gap between text-to-text and cross-modal retrieval. Via a single vector space, jina-clip-v2 offers state-of-the-art performance on both tasks. This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (MuRAG) applications, enabling seamless text-to-text and text-to-image searches within a single model.

Data & Parameters

Check out our paper. Updated technical report for v2 coming soon!

Usage

via Jina AI [Embedding API](https://jina.ai/embeddings/)
curl https://api.jina.ai/v1/embeddings \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer [JINA_AI_API_TOKEN]" \
  -d @- <<EOFEOF
  {
    "model": "jina-clip-v2",
    "dimensions": 1024,
    "task": "retrieval.query",
    "normalized": true,
    "embedding_type": "float",
    "input": [
        {
            "text": "غروب جميل على الشاطئ"
        },
        {
            "text": "海滩上美丽的日落"
        },
        {
            "text": "A beautiful sunset over the beach"
        },
        {
            "text": "Un beau coucher de soleil sur la plage"
        },
        {
            "text": "Ein wunderschöner Sonnenuntergang am Strand"
        },
        {
            "text": "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία"
        },
        {
            "text": "समुद्र तट पर एक खूबसूरत सूर्यास्त"
        },
        {
            "text": "Un bellissimo tramonto sulla spiaggia"
        },
        {
            "text": "浜辺に沈む美しい夕日"
        },
        {
            "text": "해변 위로 아름다운 일몰"
        },
        {
            "image": "https://i.ibb.co/nQNGqL0/beach1.jpg"
        },
        {
            "image": "https://i.ibb.co/r5w8hG8/beach2.jpg"
        }
    ]
  }
EOFEOF
via transformers:
# !pip install transformers einops timm pillow
from transformers import AutoModel

# Initialize the model
model = AutoModel.from_pretrained("jinaai/jina-clip-v2", trust_remote_code=True)

# Corpus
sentences = [
    "غروب جميل على الشاطئ", # Arabic
    "海滩上美丽的日落", # Chinese
    "Un beau coucher de soleil sur la plage", # French
    "Ein wunderschöner Sonnenuntergang am Strand", # German
    "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
    "समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
    "Un bellissimo tramonto sulla spiaggia", # Italian
    "浜辺に沈む美しい夕日", # Japanese
    "해변 위로 아름다운 일몰", # Korean
]


# Public image URLs or Pil
image_urls = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
# Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
truncate_dim = 512

# Encode text and images
text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
image_embeddings = model.encode_image(
    image_urls, truncate_dim=truncate_dim
)  # also accepts PIL.image, local filenames, dataURI

# Encode query text
query = "beautiful sunset over the beach" # English
query_embeddings = model.encode_text(
    query, task='retrieval.query', truncate_dim=truncate_dim
)

# text to image
print("En -> Img: " + str(query_embeddings @ image_embeddings[0].T))
# image similarity
print("Img -> Img: " + str(image_embeddings[0] @ image_embeddings[1].T))
# text to text
print("En -> Ar: " + str(query_embeddings @ text_embeddings[0].T))
print("En -> Zh: " + str(query_embeddings @ text_embeddings[1].T))
print("En -> Fr: " + str(query_embeddings @ text_embeddings[2].T))
print("En -> De: " + str(query_embeddings @ text_embeddings[3].T))
print("En -> Gr: " + str(query_embeddings @ text_embeddings[4].T))
print("En -> Hi: " + str(query_embeddings @ text_embeddings[5].T))
print("En -> It: " + str(query_embeddings @ text_embeddings[6].T))
print("En -> Jp: " + str(query_embeddings @ text_embeddings[7].T))
print("En -> Ko: " + str(query_embeddings @ text_embeddings[8].T))
via sentence-transformers:
# !pip install sentence-transformers einops timm pillow
from sentence_transformers import SentenceTransformer

# Initialize the model
truncate_dim = 512
model = SentenceTransformer(
    "jinaai/jina-clip-v2", trust_remote_code=True, truncate_dim=truncate_dim
)

# Corpus
sentences = [
    "غروب جميل على الشاطئ", # Arabic
    "海滩上美丽的日落", # Chinese
    "Un beau coucher de soleil sur la plage", # French
    "Ein wunderschöner Sonnenuntergang am Strand", # German
    "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
    "समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
    "Un bellissimo tramonto sulla spiaggia", # Italian
    "浜辺に沈む美しい夕日", # Japanese
    "해변 위로 아름다운 일몰", # Korean
]

# Public image URLs or Pil
image_urls = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]

text_embeddings = model.encode(sentences)
image_embeddings = model.encode(image_urls)
query = "beautiful sunset over the beach" # English
query_embeddings = model.encode(query)  

Contact

Join our Discord community and chat with other community members about ideas.

Citation

If you find jina-clip-v2 useful in your research, please cite the following paper:

@misc{2405.20204,
    Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
    Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
    Year = {2024},
    Eprint = {arXiv:2405.20204},
}