Edit model card

OCR-LayoutLMv3-Invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wild_receipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3159
  • Precision: 0.8765
  • Recall: 0.8812
  • F1: 0.8789
  • Accuracy: 0.9268

Model description

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.16 100 1.5032 0.4934 0.1444 0.2234 0.6064
No log 0.32 200 1.0282 0.5884 0.4420 0.5048 0.7385
No log 0.47 300 0.7856 0.7448 0.6205 0.6770 0.8133
No log 0.63 400 0.6464 0.7736 0.6689 0.7174 0.8399
1.1733 0.79 500 0.5672 0.7609 0.7303 0.7453 0.8557
1.1733 0.95 600 0.5055 0.7658 0.7652 0.7655 0.8677
1.1733 1.1 700 0.4735 0.7946 0.7848 0.7897 0.8784
1.1733 1.26 800 0.4414 0.7962 0.7946 0.7954 0.8818
1.1733 1.42 900 0.4094 0.8176 0.8064 0.8120 0.8894
0.5047 1.58 1000 0.3971 0.8219 0.8248 0.8234 0.8961
0.5047 1.74 1100 0.4082 0.7993 0.8362 0.8174 0.8927
0.5047 1.89 1200 0.3797 0.8240 0.8317 0.8278 0.8962
0.5047 2.05 1300 0.3597 0.8326 0.8331 0.8329 0.9020
0.5047 2.21 1400 0.3544 0.8462 0.8283 0.8371 0.9020
0.368 2.37 1500 0.3374 0.8428 0.8435 0.8432 0.9056
0.368 2.52 1600 0.3364 0.8406 0.8522 0.8464 0.9089
0.368 2.68 1700 0.3404 0.8467 0.8536 0.8501 0.9107
0.368 2.84 1800 0.3319 0.8405 0.8501 0.8453 0.9090
0.368 3.0 1900 0.3324 0.8584 0.8492 0.8538 0.9117
0.2949 3.15 2000 0.3204 0.8691 0.8404 0.8545 0.9119
0.2949 3.31 2100 0.3107 0.8599 0.8547 0.8573 0.9162
0.2949 3.47 2200 0.3169 0.8680 0.8489 0.8584 0.9146
0.2949 3.63 2300 0.3190 0.8683 0.8519 0.8600 0.9152
0.2949 3.79 2400 0.2975 0.8631 0.8617 0.8624 0.9182
0.2438 3.94 2500 0.3040 0.8566 0.8640 0.8603 0.9171
0.2438 4.1 2600 0.3045 0.8585 0.8642 0.8613 0.9181
0.2438 4.26 2700 0.3139 0.8498 0.8748 0.8621 0.9160
0.2438 4.42 2800 0.2985 0.8642 0.8672 0.8657 0.9214
0.2438 4.57 2900 0.3047 0.8688 0.8694 0.8691 0.9214
0.2028 4.73 3000 0.2986 0.8686 0.8695 0.8691 0.9207
0.2028 4.89 3100 0.3135 0.8628 0.8755 0.8691 0.9197
0.2028 5.05 3200 0.2927 0.8656 0.8755 0.8705 0.9217
0.2028 5.21 3300 0.2992 0.8724 0.8697 0.8711 0.9228
0.2028 5.36 3400 0.2975 0.8831 0.8639 0.8734 0.9244
0.1814 5.52 3500 0.2897 0.8736 0.8788 0.8762 0.9250
0.1814 5.68 3600 0.3118 0.8674 0.8751 0.8712 0.9216
0.1814 5.84 3700 0.2974 0.8735 0.8779 0.8757 0.9237
0.1814 5.99 3800 0.2957 0.8696 0.8815 0.8755 0.9240
0.1814 6.15 3900 0.3120 0.8698 0.8817 0.8757 0.9250
0.1602 6.31 4000 0.3080 0.8715 0.8800 0.8757 0.9238
0.1602 6.47 4100 0.3031 0.8767 0.8788 0.8777 0.9261
0.1602 6.62 4200 0.3146 0.8699 0.8784 0.8741 0.9227
0.1602 6.78 4300 0.3085 0.8717 0.8788 0.8752 0.9248
0.1602 6.94 4400 0.3023 0.8749 0.8756 0.8752 0.9250
0.1383 7.1 4500 0.3025 0.8860 0.8735 0.8797 0.9252
0.1383 7.26 4600 0.3026 0.8775 0.8810 0.8792 0.9272
0.1383 7.41 4700 0.3146 0.8715 0.8832 0.8773 0.9251
0.1383 7.57 4800 0.3113 0.8769 0.8803 0.8786 0.9275
0.1383 7.73 4900 0.3073 0.8797 0.8786 0.8792 0.9261
0.1306 7.89 5000 0.3163 0.8714 0.8828 0.8770 0.9248
0.1306 8.04 5100 0.3163 0.8753 0.8810 0.8781 0.9250
0.1306 8.2 5200 0.3132 0.8743 0.8804 0.8773 0.9257
0.1306 8.36 5300 0.3119 0.8735 0.8837 0.8786 0.9264
0.1306 8.52 5400 0.3145 0.8826 0.8779 0.8802 0.9272
0.1174 8.68 5500 0.3166 0.8776 0.8811 0.8794 0.9261
0.1174 8.83 5600 0.3146 0.8776 0.8814 0.8795 0.9260
0.1174 8.99 5700 0.3135 0.8763 0.8826 0.8795 0.9271
0.1174 9.15 5800 0.3154 0.8794 0.8818 0.8806 0.9275
0.1174 9.31 5900 0.3152 0.8788 0.8817 0.8802 0.9274
0.11 9.46 6000 0.3159 0.8765 0.8812 0.8789 0.9268

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
70
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using jinhybr/OCR-LayoutLMv3-Invoice 3

Evaluation results