Whisper Small Jsun Hi - Jiping
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2775
- Wer: 31.7616
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2092 | 0.61 | 1000 | 0.3201 | 38.7666 |
0.1106 | 1.22 | 2000 | 0.2810 | 34.1023 |
0.1049 | 1.83 | 3000 | 0.2660 | 32.4812 |
0.052 | 2.45 | 4000 | 0.2775 | 31.7616 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.