Edit model card

whisper-medium.en-atcosim

This model is a fine-tuned version of openai/whisper-medium.en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0542
  • Wer: 1.4169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
0.2006 8.33 500 0.0410 1.2456
0.0003 16.67 1000 0.0443 1.2224
0.0001 25.0 1500 0.0473 1.1854
0.0 33.33 2000 0.0489 1.2039
0.0 41.67 2500 0.0501 1.2224
0.0 50.0 3000 0.0511 1.2873
0.0 58.33 3500 0.0520 1.3012
0.0 66.67 4000 0.0527 1.3197
0.0 75.0 4500 0.0533 1.3891
0.0 83.33 5000 0.0537 1.4077
0.0 91.67 5500 0.0541 1.4169
0.0 100.0 6000 0.0542 1.4169

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jlvdoorn/whisper-medium.en-atcosim

Finetuned
(24)
this model