|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
from typing import Dict, List, Optional, Tuple, Type, Union |
|
from diffusers import AutoencoderKL |
|
from transformers import CLIPTextModel |
|
import numpy as np |
|
import torch |
|
import re |
|
|
|
|
|
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") |
|
|
|
|
|
class LoRAModule(torch.nn.Module): |
|
""" |
|
replaces forward method of the original Linear, instead of replacing the original Linear module. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
lora_name, |
|
org_module: torch.nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
dropout=None, |
|
rank_dropout=None, |
|
module_dropout=None, |
|
): |
|
"""if alpha == 0 or None, alpha is rank (no scaling).""" |
|
super().__init__() |
|
self.lora_name = lora_name |
|
|
|
if org_module.__class__.__name__ == "Conv2d": |
|
in_dim = org_module.in_channels |
|
out_dim = org_module.out_channels |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.lora_dim = lora_dim |
|
|
|
if org_module.__class__.__name__ == "Conv2d": |
|
kernel_size = org_module.kernel_size |
|
stride = org_module.stride |
|
padding = org_module.padding |
|
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) |
|
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) |
|
else: |
|
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) |
|
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer("alpha", torch.tensor(alpha)) |
|
|
|
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) |
|
torch.nn.init.zeros_(self.lora_up.weight) |
|
|
|
self.multiplier = multiplier |
|
self.org_module = org_module |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module.forward |
|
self.org_module.forward = self.forward |
|
del self.org_module |
|
|
|
def forward(self, x): |
|
org_forwarded = self.org_forward(x) |
|
|
|
|
|
if self.module_dropout is not None and self.training: |
|
if torch.rand(1) < self.module_dropout: |
|
return org_forwarded |
|
|
|
lx = self.lora_down(x) |
|
|
|
|
|
if self.dropout is not None and self.training: |
|
lx = torch.nn.functional.dropout(lx, p=self.dropout) |
|
|
|
|
|
if self.rank_dropout is not None and self.training: |
|
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout |
|
if len(lx.size()) == 3: |
|
mask = mask.unsqueeze(1) |
|
elif len(lx.size()) == 4: |
|
mask = mask.unsqueeze(-1).unsqueeze(-1) |
|
lx = lx * mask |
|
|
|
|
|
|
|
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) |
|
else: |
|
scale = self.scale |
|
|
|
lx = self.lora_up(lx) |
|
|
|
return org_forwarded + lx * self.multiplier * scale |
|
|
|
|
|
class LoRAInfModule(LoRAModule): |
|
def __init__( |
|
self, |
|
lora_name, |
|
org_module: torch.nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
**kwargs, |
|
): |
|
|
|
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) |
|
|
|
self.org_module_ref = [org_module] |
|
self.enabled = True |
|
|
|
|
|
self.text_encoder = False |
|
if lora_name.startswith("lora_te_"): |
|
self.regional = False |
|
self.use_sub_prompt = True |
|
self.text_encoder = True |
|
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name: |
|
self.regional = False |
|
self.use_sub_prompt = True |
|
elif "time_emb" in lora_name: |
|
self.regional = False |
|
self.use_sub_prompt = False |
|
else: |
|
self.regional = True |
|
self.use_sub_prompt = False |
|
|
|
self.network: LoRANetwork = None |
|
|
|
def set_network(self, network): |
|
self.network = network |
|
|
|
|
|
def merge_to(self, sd, dtype, device): |
|
|
|
up_weight = sd["lora_up.weight"].to(torch.float).to(device) |
|
down_weight = sd["lora_down.weight"].to(torch.float).to(device) |
|
|
|
|
|
org_sd = self.org_module.state_dict() |
|
weight = org_sd["weight"].to(torch.float) |
|
|
|
|
|
if len(weight.size()) == 2: |
|
|
|
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale |
|
elif down_weight.size()[2:4] == (1, 1): |
|
|
|
weight = ( |
|
weight |
|
+ self.multiplier |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* self.scale |
|
) |
|
else: |
|
|
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
|
|
weight = weight + self.multiplier * conved * self.scale |
|
|
|
|
|
org_sd["weight"] = weight.to(dtype) |
|
self.org_module.load_state_dict(org_sd) |
|
|
|
|
|
def get_weight(self, multiplier=None): |
|
if multiplier is None: |
|
multiplier = self.multiplier |
|
|
|
|
|
up_weight = self.lora_up.weight.to(torch.float) |
|
down_weight = self.lora_down.weight.to(torch.float) |
|
|
|
|
|
if len(down_weight.size()) == 2: |
|
|
|
weight = self.multiplier * (up_weight @ down_weight) * self.scale |
|
elif down_weight.size()[2:4] == (1, 1): |
|
|
|
weight = ( |
|
self.multiplier |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* self.scale |
|
) |
|
else: |
|
|
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
weight = self.multiplier * conved * self.scale |
|
|
|
return weight |
|
|
|
def set_region(self, region): |
|
self.region = region |
|
self.region_mask = None |
|
|
|
def default_forward(self, x): |
|
|
|
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale |
|
|
|
def forward(self, x): |
|
if not self.enabled: |
|
return self.org_forward(x) |
|
|
|
if self.network is None or self.network.sub_prompt_index is None: |
|
return self.default_forward(x) |
|
if not self.regional and not self.use_sub_prompt: |
|
return self.default_forward(x) |
|
|
|
if self.regional: |
|
return self.regional_forward(x) |
|
else: |
|
return self.sub_prompt_forward(x) |
|
|
|
def get_mask_for_x(self, x): |
|
|
|
if len(x.size()) == 4: |
|
h, w = x.size()[2:4] |
|
area = h * w |
|
else: |
|
area = x.size()[1] |
|
|
|
mask = self.network.mask_dic[area] |
|
if mask is None: |
|
raise ValueError(f"mask is None for resolution {area}") |
|
if len(x.size()) != 4: |
|
mask = torch.reshape(mask, (1, -1, 1)) |
|
return mask |
|
|
|
def regional_forward(self, x): |
|
if "attn2_to_out" in self.lora_name: |
|
return self.to_out_forward(x) |
|
|
|
if self.network.mask_dic is None: |
|
return self.default_forward(x) |
|
|
|
|
|
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale |
|
mask = self.get_mask_for_x(lx) |
|
|
|
lx = lx * mask |
|
|
|
x = self.org_forward(x) |
|
x = x + lx |
|
|
|
if "attn2_to_q" in self.lora_name and self.network.is_last_network: |
|
x = self.postp_to_q(x) |
|
|
|
return x |
|
|
|
def postp_to_q(self, x): |
|
|
|
has_real_uncond = x.size()[0] // self.network.batch_size == 3 |
|
qc = self.network.batch_size |
|
qc += self.network.batch_size * self.network.num_sub_prompts |
|
if has_real_uncond: |
|
qc += self.network.batch_size |
|
|
|
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype) |
|
query[: self.network.batch_size] = x[: self.network.batch_size] |
|
|
|
for i in range(self.network.batch_size): |
|
qi = self.network.batch_size + i * self.network.num_sub_prompts |
|
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i] |
|
|
|
if has_real_uncond: |
|
query[-self.network.batch_size :] = x[-self.network.batch_size :] |
|
|
|
|
|
return query |
|
|
|
def sub_prompt_forward(self, x): |
|
if x.size()[0] == self.network.batch_size: |
|
return self.org_forward(x) |
|
|
|
emb_idx = self.network.sub_prompt_index |
|
if not self.text_encoder: |
|
emb_idx += self.network.batch_size |
|
|
|
|
|
lx = x[emb_idx :: self.network.num_sub_prompts] |
|
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale |
|
|
|
|
|
|
|
x = self.org_forward(x) |
|
x[emb_idx :: self.network.num_sub_prompts] += lx |
|
|
|
return x |
|
|
|
def to_out_forward(self, x): |
|
|
|
|
|
if self.network.is_last_network: |
|
masks = [None] * self.network.num_sub_prompts |
|
self.network.shared[self.lora_name] = (None, masks) |
|
else: |
|
lx, masks = self.network.shared[self.lora_name] |
|
|
|
|
|
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts] |
|
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale |
|
|
|
if self.network.is_last_network: |
|
lx = torch.zeros( |
|
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype |
|
) |
|
self.network.shared[self.lora_name] = (lx, masks) |
|
|
|
|
|
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1 |
|
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1) |
|
|
|
|
|
x = self.org_forward(x) |
|
if not self.network.is_last_network: |
|
return x |
|
|
|
lx, masks = self.network.shared.pop(self.lora_name) |
|
|
|
|
|
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2 |
|
|
|
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype) |
|
out[: self.network.batch_size] = x[: self.network.batch_size] |
|
if has_real_uncond: |
|
out[-self.network.batch_size :] = x[-self.network.batch_size :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = torch.cat(masks) |
|
mask_sum = torch.sum(mask, dim=0) + 1e-4 |
|
for i in range(self.network.batch_size): |
|
|
|
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts] |
|
lx1 = lx1 * mask |
|
lx1 = torch.sum(lx1, dim=0) |
|
|
|
xi = self.network.batch_size + i * self.network.num_sub_prompts |
|
x1 = x[xi : xi + self.network.num_sub_prompts] |
|
x1 = x1 * mask |
|
x1 = torch.sum(x1, dim=0) |
|
x1 = x1 / mask_sum |
|
|
|
x1 = x1 + lx1 |
|
out[self.network.batch_size + i] = x1 |
|
|
|
|
|
return out |
|
|
|
|
|
def parse_block_lr_kwargs(nw_kwargs): |
|
down_lr_weight = nw_kwargs.get("down_lr_weight", None) |
|
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None) |
|
up_lr_weight = nw_kwargs.get("up_lr_weight", None) |
|
|
|
|
|
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None: |
|
return None, None, None |
|
|
|
|
|
if down_lr_weight is not None: |
|
|
|
if "," in down_lr_weight: |
|
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")] |
|
|
|
if mid_lr_weight is not None: |
|
mid_lr_weight = float(mid_lr_weight) |
|
|
|
if up_lr_weight is not None: |
|
if "," in up_lr_weight: |
|
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")] |
|
|
|
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight( |
|
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0)) |
|
) |
|
|
|
return down_lr_weight, mid_lr_weight, up_lr_weight |
|
|
|
|
|
def create_network( |
|
multiplier: float, |
|
network_dim: Optional[int], |
|
network_alpha: Optional[float], |
|
unet, |
|
neuron_dropout: Optional[float] = None, |
|
**kwargs, |
|
): |
|
if network_dim is None: |
|
network_dim = 4 |
|
if network_alpha is None: |
|
network_alpha = 1.0 |
|
|
|
|
|
conv_dim = kwargs.get("conv_dim", None) |
|
conv_alpha = kwargs.get("conv_alpha", None) |
|
if conv_dim is not None: |
|
conv_dim = int(conv_dim) |
|
if conv_alpha is None: |
|
conv_alpha = 1.0 |
|
else: |
|
conv_alpha = float(conv_alpha) |
|
|
|
|
|
block_dims = kwargs.get("block_dims", None) |
|
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) |
|
|
|
|
|
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None: |
|
block_alphas = kwargs.get("block_alphas", None) |
|
conv_block_dims = kwargs.get("conv_block_dims", None) |
|
conv_block_alphas = kwargs.get("conv_block_alphas", None) |
|
|
|
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas( |
|
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha |
|
) |
|
|
|
|
|
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas( |
|
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight |
|
) |
|
|
|
else: |
|
block_alphas = None |
|
conv_block_dims = None |
|
conv_block_alphas = None |
|
|
|
|
|
rank_dropout = kwargs.get("rank_dropout", None) |
|
if rank_dropout is not None: |
|
rank_dropout = float(rank_dropout) |
|
module_dropout = kwargs.get("module_dropout", None) |
|
if module_dropout is not None: |
|
module_dropout = float(module_dropout) |
|
|
|
|
|
network = LoRANetwork( |
|
unet, |
|
multiplier=multiplier, |
|
lora_dim=network_dim, |
|
alpha=network_alpha, |
|
dropout=neuron_dropout, |
|
rank_dropout=rank_dropout, |
|
module_dropout=module_dropout, |
|
conv_lora_dim=conv_dim, |
|
conv_alpha=conv_alpha, |
|
block_dims=block_dims, |
|
block_alphas=block_alphas, |
|
conv_block_dims=conv_block_dims, |
|
conv_block_alphas=conv_block_alphas, |
|
varbose=True, |
|
) |
|
|
|
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: |
|
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) |
|
|
|
return network |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_block_dims_and_alphas( |
|
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha |
|
): |
|
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1 |
|
|
|
def parse_ints(s): |
|
return [int(i) for i in s.split(",")] |
|
|
|
def parse_floats(s): |
|
return [float(i) for i in s.split(",")] |
|
|
|
|
|
if block_dims is not None: |
|
block_dims = parse_ints(block_dims) |
|
assert ( |
|
len(block_dims) == num_total_blocks |
|
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください" |
|
else: |
|
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります") |
|
block_dims = [network_dim] * num_total_blocks |
|
|
|
if block_alphas is not None: |
|
block_alphas = parse_floats(block_alphas) |
|
assert ( |
|
len(block_alphas) == num_total_blocks |
|
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください" |
|
else: |
|
print( |
|
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります" |
|
) |
|
block_alphas = [network_alpha] * num_total_blocks |
|
|
|
|
|
if conv_block_dims is not None: |
|
conv_block_dims = parse_ints(conv_block_dims) |
|
assert ( |
|
len(conv_block_dims) == num_total_blocks |
|
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください" |
|
|
|
if conv_block_alphas is not None: |
|
conv_block_alphas = parse_floats(conv_block_alphas) |
|
assert ( |
|
len(conv_block_alphas) == num_total_blocks |
|
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください" |
|
else: |
|
if conv_alpha is None: |
|
conv_alpha = 1.0 |
|
print( |
|
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります" |
|
) |
|
conv_block_alphas = [conv_alpha] * num_total_blocks |
|
else: |
|
if conv_dim is not None: |
|
print( |
|
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります" |
|
) |
|
conv_block_dims = [conv_dim] * num_total_blocks |
|
conv_block_alphas = [conv_alpha] * num_total_blocks |
|
else: |
|
conv_block_dims = None |
|
conv_block_alphas = None |
|
|
|
return block_dims, block_alphas, conv_block_dims, conv_block_alphas |
|
|
|
|
|
|
|
def get_block_lr_weight( |
|
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold |
|
) -> Tuple[List[float], List[float], List[float]]: |
|
|
|
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None: |
|
return None, None, None |
|
|
|
max_len = LoRANetwork.NUM_OF_BLOCKS |
|
|
|
def get_list(name_with_suffix) -> List[float]: |
|
import math |
|
|
|
tokens = name_with_suffix.split("+") |
|
name = tokens[0] |
|
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0 |
|
|
|
if name == "cosine": |
|
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))] |
|
elif name == "sine": |
|
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)] |
|
elif name == "linear": |
|
return [i / (max_len - 1) + base_lr for i in range(max_len)] |
|
elif name == "reverse_linear": |
|
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))] |
|
elif name == "zeros": |
|
return [0.0 + base_lr] * max_len |
|
else: |
|
print( |
|
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros" |
|
% (name) |
|
) |
|
return None |
|
|
|
if type(down_lr_weight) == str: |
|
down_lr_weight = get_list(down_lr_weight) |
|
if type(up_lr_weight) == str: |
|
up_lr_weight = get_list(up_lr_weight) |
|
|
|
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len): |
|
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len) |
|
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len) |
|
up_lr_weight = up_lr_weight[:max_len] |
|
down_lr_weight = down_lr_weight[:max_len] |
|
|
|
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len): |
|
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len) |
|
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len) |
|
|
|
if down_lr_weight != None and len(down_lr_weight) < max_len: |
|
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight)) |
|
if up_lr_weight != None and len(up_lr_weight) < max_len: |
|
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight)) |
|
|
|
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None): |
|
print("apply block learning rate / 階層別学習率を適用します。") |
|
if down_lr_weight != None: |
|
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight] |
|
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight) |
|
else: |
|
print("down_lr_weight: all 1.0, すべて1.0") |
|
|
|
if mid_lr_weight != None: |
|
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0 |
|
print("mid_lr_weight:", mid_lr_weight) |
|
else: |
|
print("mid_lr_weight: 1.0") |
|
|
|
if up_lr_weight != None: |
|
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight] |
|
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight) |
|
else: |
|
print("up_lr_weight: all 1.0, すべて1.0") |
|
|
|
return down_lr_weight, mid_lr_weight, up_lr_weight |
|
|
|
|
|
|
|
def remove_block_dims_and_alphas( |
|
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight |
|
): |
|
|
|
if down_lr_weight != None: |
|
for i, lr in enumerate(down_lr_weight): |
|
if lr == 0: |
|
block_dims[i] = 0 |
|
if conv_block_dims is not None: |
|
conv_block_dims[i] = 0 |
|
if mid_lr_weight != None: |
|
if mid_lr_weight == 0: |
|
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 |
|
if conv_block_dims is not None: |
|
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 |
|
if up_lr_weight != None: |
|
for i, lr in enumerate(up_lr_weight): |
|
if lr == 0: |
|
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 |
|
if conv_block_dims is not None: |
|
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 |
|
|
|
return block_dims, block_alphas, conv_block_dims, conv_block_alphas |
|
|
|
|
|
|
|
def get_block_index(lora_name: str) -> int: |
|
block_idx = -1 |
|
|
|
m = RE_UPDOWN.search(lora_name) |
|
if m: |
|
g = m.groups() |
|
i = int(g[1]) |
|
j = int(g[3]) |
|
if g[2] == "resnets": |
|
idx = 3 * i + j |
|
elif g[2] == "attentions": |
|
idx = 3 * i + j |
|
elif g[2] == "upsamplers" or g[2] == "downsamplers": |
|
idx = 3 * i + 2 |
|
|
|
if g[0] == "down": |
|
block_idx = 1 + idx |
|
elif g[0] == "up": |
|
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx |
|
|
|
elif "mid_block_" in lora_name: |
|
block_idx = LoRANetwork.NUM_OF_BLOCKS |
|
|
|
return block_idx |
|
|
|
|
|
|
|
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): |
|
if weights_sd is None: |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file, safe_open |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
|
|
modules_dim = {} |
|
modules_alpha = {} |
|
for key, value in weights_sd.items(): |
|
if "." not in key: |
|
continue |
|
|
|
lora_name = key.split(".")[0] |
|
if "alpha" in key: |
|
modules_alpha[lora_name] = value |
|
elif "lora_down" in key: |
|
dim = value.size()[0] |
|
modules_dim[lora_name] = dim |
|
|
|
|
|
|
|
for key in modules_dim.keys(): |
|
if key not in modules_alpha: |
|
modules_alpha[key] = modules_dim[key] |
|
|
|
module_class = LoRAInfModule if for_inference else LoRAModule |
|
|
|
network = LoRANetwork( |
|
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class |
|
) |
|
|
|
|
|
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) |
|
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: |
|
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) |
|
|
|
return network, weights_sd |
|
|
|
|
|
class LoRANetwork(torch.nn.Module): |
|
NUM_OF_BLOCKS = 12 |
|
|
|
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] |
|
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] |
|
LORA_PREFIX_UNET = "lora_unet" |
|
|
|
def __init__( |
|
self, |
|
unet, |
|
multiplier: float = 1.0, |
|
lora_dim: int = 4, |
|
alpha: float = 1, |
|
dropout: Optional[float] = None, |
|
rank_dropout: Optional[float] = None, |
|
module_dropout: Optional[float] = None, |
|
conv_lora_dim: Optional[int] = None, |
|
conv_alpha: Optional[float] = None, |
|
block_dims: Optional[List[int]] = None, |
|
block_alphas: Optional[List[float]] = None, |
|
conv_block_dims: Optional[List[int]] = None, |
|
conv_block_alphas: Optional[List[float]] = None, |
|
modules_dim: Optional[Dict[str, int]] = None, |
|
modules_alpha: Optional[Dict[str, int]] = None, |
|
module_class: Type[object] = LoRAModule, |
|
varbose: Optional[bool] = False, |
|
) -> None: |
|
""" |
|
LoRA network: すごく引数が多いが、パターンは以下の通り |
|
1. lora_dimとalphaを指定 |
|
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 |
|
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない |
|
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する |
|
5. modules_dimとmodules_alphaを指定 (推論用) |
|
""" |
|
super().__init__() |
|
self.multiplier = multiplier |
|
|
|
self.lora_dim = lora_dim |
|
self.alpha = alpha |
|
self.conv_lora_dim = conv_lora_dim |
|
self.conv_alpha = conv_alpha |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
|
|
|
|
|
|
def create_modules( |
|
is_unet: bool, |
|
root_module: torch.nn.Module, |
|
target_replace_modules: List[torch.nn.Module], |
|
) -> List[LoRAModule]: |
|
prefix = ( |
|
self.LORA_PREFIX_UNET |
|
) |
|
loras = [] |
|
skipped = [] |
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
is_linear = child_module.__class__.__name__ == "Linear" |
|
is_conv2d = child_module.__class__.__name__ == "Conv2d" |
|
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) |
|
|
|
if is_linear or is_conv2d: |
|
lora_name = prefix + "." + name + "." + child_name |
|
lora_name = lora_name.replace(".", "_") |
|
|
|
dim = None |
|
alpha = None |
|
|
|
if modules_dim is not None: |
|
|
|
if lora_name in modules_dim: |
|
dim = modules_dim[lora_name] |
|
alpha = modules_alpha[lora_name] |
|
elif is_unet and block_dims is not None: |
|
|
|
block_idx = get_block_index(lora_name) |
|
if is_linear or is_conv2d_1x1: |
|
dim = block_dims[block_idx] |
|
alpha = block_alphas[block_idx] |
|
elif conv_block_dims is not None: |
|
dim = conv_block_dims[block_idx] |
|
alpha = conv_block_alphas[block_idx] |
|
else: |
|
|
|
if is_linear or is_conv2d_1x1: |
|
dim = self.lora_dim |
|
alpha = self.alpha |
|
elif self.conv_lora_dim is not None: |
|
dim = self.conv_lora_dim |
|
alpha = self.conv_alpha |
|
|
|
if dim is None or dim == 0: |
|
|
|
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None): |
|
skipped.append(lora_name) |
|
continue |
|
|
|
lora = module_class( |
|
lora_name, |
|
child_module, |
|
self.multiplier, |
|
dim, |
|
alpha, |
|
dropout=dropout, |
|
rank_dropout=rank_dropout, |
|
module_dropout=module_dropout, |
|
) |
|
loras.append(lora) |
|
return loras, skipped |
|
|
|
|
|
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE |
|
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: |
|
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 |
|
|
|
self.unet_loras, skipped_un = create_modules(True, unet, target_modules) |
|
|
|
|
|
skipped = skipped_un |
|
|
|
self.up_lr_weight: List[float] = None |
|
self.down_lr_weight: List[float] = None |
|
self.mid_lr_weight: float = None |
|
self.block_lr = False |
|
|
|
|
|
names = set() |
|
for lora in self.unet_loras: |
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" |
|
names.add(lora.lora_name) |
|
|
|
def set_multiplier(self, multiplier): |
|
self.multiplier = multiplier |
|
for lora in self.unet_loras: |
|
lora.multiplier = self.multiplier |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
info = self.load_state_dict(weights_sd, False) |
|
return info |
|
|
|
def apply_to(self, unet, apply_unet=True): |
|
for lora in self.unet_loras: |
|
lora.apply_to() |
|
self.add_module(lora.lora_name, lora) |
|
|
|
|
|
def is_mergeable(self): |
|
return True |
|
|
|
|
|
def merge_to(self, text_encoder, unet, weights_sd, dtype, device): |
|
apply_text_encoder = apply_unet = False |
|
for key in weights_sd.keys(): |
|
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER): |
|
apply_text_encoder = True |
|
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET): |
|
apply_unet = True |
|
|
|
|
|
for lora in self.unet_loras: |
|
sd_for_lora = {} |
|
for key in weights_sd.keys(): |
|
if key.startswith(lora.lora_name): |
|
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] |
|
lora.merge_to(sd_for_lora, dtype, device) |
|
|
|
|
|
def set_block_lr_weight( |
|
self, |
|
up_lr_weight: List[float] = None, |
|
mid_lr_weight: float = None, |
|
down_lr_weight: List[float] = None, |
|
): |
|
self.block_lr = True |
|
self.down_lr_weight = down_lr_weight |
|
self.mid_lr_weight = mid_lr_weight |
|
self.up_lr_weight = up_lr_weight |
|
|
|
def get_lr_weight(self, lora: LoRAModule) -> float: |
|
lr_weight = 1.0 |
|
block_idx = get_block_index(lora.lora_name) |
|
if block_idx < 0: |
|
return lr_weight |
|
|
|
if block_idx < LoRANetwork.NUM_OF_BLOCKS: |
|
if self.down_lr_weight != None: |
|
lr_weight = self.down_lr_weight[block_idx] |
|
elif block_idx == LoRANetwork.NUM_OF_BLOCKS: |
|
if self.mid_lr_weight != None: |
|
lr_weight = self.mid_lr_weight |
|
elif block_idx > LoRANetwork.NUM_OF_BLOCKS: |
|
if self.up_lr_weight != None: |
|
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1] |
|
|
|
return lr_weight |
|
|
|
def prepare_optimizer_params(self, unet_lr): |
|
self.requires_grad_(True) |
|
all_params = [] |
|
|
|
def enumerate_params(loras): |
|
params = [] |
|
for lora in loras: |
|
params.extend(lora.parameters()) |
|
return params |
|
|
|
|
|
if self.unet_loras: |
|
if self.block_lr: |
|
|
|
block_idx_to_lora = {} |
|
for lora in self.unet_loras: |
|
idx = get_block_index(lora.lora_name) |
|
if idx not in block_idx_to_lora: |
|
block_idx_to_lora[idx] = [] |
|
block_idx_to_lora[idx].append(lora) |
|
|
|
|
|
for idx, block_loras in block_idx_to_lora.items(): |
|
param_data = {"params": enumerate_params(block_loras)} |
|
|
|
if unet_lr is not None: |
|
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0]) |
|
if ("lr" in param_data) and (param_data["lr"] == 0): |
|
continue |
|
all_params.append(param_data) |
|
|
|
else: |
|
param_data = {"params": enumerate_params(self.unet_loras)} |
|
if unet_lr is not None: |
|
param_data["lr"] = unet_lr |
|
all_params.append(param_data) |
|
|
|
return all_params |
|
|
|
def enable_gradient_checkpointing(self): |
|
|
|
pass |
|
|
|
def prepare_grad_etc(self, unet): |
|
self.requires_grad_(True) |
|
|
|
def on_epoch_start(self, unet): |
|
self.train() |
|
|
|
def get_trainable_params(self): |
|
return self.parameters() |
|
|
|
def save_weights(self, file, dtype, metadata): |
|
if metadata is not None and len(metadata) == 0: |
|
metadata = None |
|
|
|
state_dict = self.state_dict() |
|
|
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
|
|
if metadata is None: |
|
metadata = {} |
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
|
|
def set_region(self, sub_prompt_index, is_last_network, mask): |
|
if mask.max() == 0: |
|
mask = torch.ones_like(mask) |
|
|
|
self.mask = mask |
|
self.sub_prompt_index = sub_prompt_index |
|
self.is_last_network = is_last_network |
|
|
|
for lora in self.unet_loras: |
|
lora.set_network(self) |
|
|
|
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared): |
|
self.batch_size = batch_size |
|
self.num_sub_prompts = num_sub_prompts |
|
self.current_size = (height, width) |
|
self.shared = shared |
|
|
|
|
|
mask = self.mask |
|
mask_dic = {} |
|
mask = mask.unsqueeze(0).unsqueeze(1) |
|
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight |
|
dtype = ref_weight.dtype |
|
device = ref_weight.device |
|
|
|
def resize_add(mh, mw): |
|
|
|
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") |
|
m = m.to(device, dtype=dtype) |
|
mask_dic[mh * mw] = m |
|
|
|
h = height // 8 |
|
w = width // 8 |
|
for _ in range(4): |
|
resize_add(h, w) |
|
if h % 2 == 1 or w % 2 == 1: |
|
resize_add(h + h % 2, w + w % 2) |
|
h = (h + 1) // 2 |
|
w = (w + 1) // 2 |
|
|
|
self.mask_dic = mask_dic |
|
|
|
def backup_weights(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
if not hasattr(org_module, "_lora_org_weight"): |
|
sd = org_module.state_dict() |
|
org_module._lora_org_weight = sd["weight"].detach().clone() |
|
org_module._lora_restored = True |
|
|
|
def restore_weights(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
if not org_module._lora_restored: |
|
sd = org_module.state_dict() |
|
sd["weight"] = org_module._lora_org_weight |
|
org_module.load_state_dict(sd) |
|
org_module._lora_restored = True |
|
|
|
def pre_calculation(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
sd = org_module.state_dict() |
|
|
|
org_weight = sd["weight"] |
|
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) |
|
sd["weight"] = org_weight + lora_weight |
|
assert sd["weight"].shape == org_weight.shape |
|
org_module.load_state_dict(sd) |
|
|
|
org_module._lora_restored = False |
|
lora.enabled = False |
|
|
|
def apply_max_norm_regularization(self, max_norm_value, device): |
|
downkeys = [] |
|
upkeys = [] |
|
alphakeys = [] |
|
norms = [] |
|
keys_scaled = 0 |
|
|
|
state_dict = self.state_dict() |
|
for key in state_dict.keys(): |
|
if "lora_down" in key and "weight" in key: |
|
downkeys.append(key) |
|
upkeys.append(key.replace("lora_down", "lora_up")) |
|
alphakeys.append(key.replace("lora_down.weight", "alpha")) |
|
|
|
for i in range(len(downkeys)): |
|
down = state_dict[downkeys[i]].to(device) |
|
up = state_dict[upkeys[i]].to(device) |
|
alpha = state_dict[alphakeys[i]].to(device) |
|
dim = down.shape[0] |
|
scale = alpha / dim |
|
|
|
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): |
|
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): |
|
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) |
|
else: |
|
updown = up @ down |
|
|
|
updown *= scale |
|
|
|
norm = updown.norm().clamp(min=max_norm_value / 2) |
|
desired = torch.clamp(norm, max=max_norm_value) |
|
ratio = desired.cpu() / norm.cpu() |
|
sqrt_ratio = ratio**0.5 |
|
if ratio != 1: |
|
keys_scaled += 1 |
|
state_dict[upkeys[i]] *= sqrt_ratio |
|
state_dict[downkeys[i]] *= sqrt_ratio |
|
scalednorm = updown.norm() * ratio |
|
norms.append(scalednorm.item()) |
|
|
|
return keys_scaled, sum(norms) / len(norms), max(norms) |
|
|