metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: barthez-deft-linguistique
results:
- task:
name: Summarization
type: summarization
metrics:
- name: Rouge1
type: rouge
value: 41.989
barthez-deft-linguistique
This model is a fine-tuned version of moussaKam/barthez on an unknown dataset.
Note: this model is one of the preliminary experiments and it slightly underperforms the models published in the paper (using MBartHez)
It achieves the following results on the evaluation set:
- Loss: 1.7596
- Rouge1: 41.989
- Rouge2: 22.4524
- Rougel: 32.7966
- Rougelsum: 32.7953
- Gen Len: 22.1549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.0569 | 1.0 | 108 | 2.0282 | 31.6993 | 14.9483 | 25.5565 | 25.4379 | 18.3803 |
2.2892 | 2.0 | 216 | 1.8553 | 35.2563 | 18.019 | 28.3135 | 28.2927 | 18.507 |
1.9062 | 3.0 | 324 | 1.7696 | 37.4613 | 18.1488 | 28.9959 | 29.0134 | 19.5352 |
1.716 | 4.0 | 432 | 1.7641 | 37.6903 | 18.7496 | 30.1097 | 30.1027 | 18.9577 |
1.5722 | 5.0 | 540 | 1.7781 | 38.1013 | 19.8291 | 29.8142 | 29.802 | 19.169 |
1.4655 | 6.0 | 648 | 1.7661 | 38.3557 | 20.3309 | 30.5068 | 30.4728 | 19.3662 |
1.3507 | 7.0 | 756 | 1.7596 | 39.7409 | 20.2998 | 31.0849 | 31.1152 | 19.3944 |
1.2874 | 8.0 | 864 | 1.7706 | 37.7846 | 20.3457 | 30.6826 | 30.6321 | 19.4789 |
1.2641 | 9.0 | 972 | 1.7848 | 38.7421 | 19.5701 | 30.5798 | 30.6305 | 19.3944 |
1.1192 | 10.0 | 1080 | 1.8008 | 40.3313 | 20.3378 | 31.8325 | 31.8648 | 19.5493 |
1.0724 | 11.0 | 1188 | 1.8450 | 38.9612 | 20.5719 | 31.4496 | 31.3144 | 19.8592 |
1.0077 | 12.0 | 1296 | 1.8364 | 36.5997 | 18.46 | 29.1808 | 29.1705 | 19.7324 |
0.9362 | 13.0 | 1404 | 1.8677 | 38.0371 | 19.2321 | 30.3893 | 30.3926 | 19.6338 |
0.8868 | 14.0 | 1512 | 1.9154 | 36.4737 | 18.5314 | 29.325 | 29.3634 | 19.6479 |
0.8335 | 15.0 | 1620 | 1.9344 | 35.7583 | 18.0687 | 27.9666 | 27.8675 | 19.8028 |
0.8305 | 16.0 | 1728 | 1.9556 | 37.2137 | 18.2199 | 29.5959 | 29.5799 | 19.9577 |
0.8057 | 17.0 | 1836 | 1.9793 | 36.6834 | 17.8505 | 28.6701 | 28.7145 | 19.7324 |
0.7869 | 18.0 | 1944 | 1.9994 | 37.5918 | 19.1984 | 28.8569 | 28.8278 | 19.7606 |
0.7549 | 19.0 | 2052 | 2.0117 | 37.3278 | 18.5169 | 28.778 | 28.7737 | 19.8028 |
0.7497 | 20.0 | 2160 | 2.0189 | 37.7513 | 19.1813 | 29.3675 | 29.402 | 19.6901 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1+cu110
- Datasets 1.11.0
- Tokenizers 0.10.3