occiglot10b / README.md
johannhartmann's picture
Upload folder using huggingface_hub
cd39e03 verified
metadata
base_model: mayflowergmbh/occiglot-10b-de-en-instruct
tags:
  - generated_from_trainer
model-index:
  - name: occiglot10b/
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mayflowergmbh/occiglot-10b-de-en-instruct
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

rl: dpo
datasets:
  - path: johannhartmann/mistralorpo
    split: train
    type: chatml.intel
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./occiglot10b/
save_total_limit: 3

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false

lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
  - embed_tokens
  - lm_head
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: occiglot
wandb_entity: mayflowerteam
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 239
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
save_safetensors: true
special_tokens:
  eos_token: "<|im_end|>"
tokens: # these are delimiters
  - "<|im_start|>"
chat_template: chatml

occiglot10b/

This model is a fine-tuned version of mayflowergmbh/occiglot-10b-de-en-instruct on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2698

Training results

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0