johntsi's picture
Added citation
b1a8705 verified
|
raw
history blame
3.08 kB
metadata
license: mit
language:
  - en
  - ar
  - ca
  - de
  - et
  - fa
  - id
  - ja
  - lv
  - mn
  - sl
  - sv
  - ta
  - tr
  - zh
metrics:
  - bleu
pipeline_tag: translation
datasets:
  - facebook/covost2

Model Name

This is a multilingually fine-tuned version of NLLB based on nllb-200-distilled-600M using the text data of CoVoST2 (En -> 15).

It is part of the paper Pushing the Limits of Zero-shot End-to-end Speech Translation. Details for the fine-tuning process are available at Appendix D.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("johntsi/nllb-200-distilled-600M_covost2_en-to-15")
model = AutoModelForSeq2SeqLM.from_pretrained("johntsi/nllb-200-distilled-600M_covost2_en-to-15")

model.eval()
model.to("cuda")

text = "Translate this text to German."
inputs = tokenizer(text, return_tensors="pt").to("cuda")
outputs = model.generate(
    **inputs,
    num_beams=5,
    forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"]
)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(translated_text)

Results

BLEU scores on CoVoST2 test

Model Ar Ca Cy De Et Fa Id Ja Lv Mn Sl Sv Ta Tr Zh Average
nllb-200-distilled-600M (original) 20.0 39.0 26.3 35.5 23.4 15.7 39.6 21.8 14.8 10.4 30.3 41.1 20.2 21.1 34.8 26.3
nllb-200-distilled-600M_covost2_en-to-15 28.5 46.3 35.5 37.1 31.5 29.2 45.2 38.4 29.1 22.0 37.7 45.4 29.9 23.0 46.7 35.0
nllb-200-distilled-1.3B (original) 23.3 43.5 33.5 37.9 27.9 16.6 41.9 23.0 20.0 13.1 35.1 43.8 21.7 23.8 37.5 29.5
nllb-200-distilled-1.3B_covost2_en-to-15 29.9 47.8 35.6 38.8 32.7 29.9 46.4 39.5 29.9 21.7 39.3 46.8 31.0 24.4 48.2 36.1

Citation

If you find these models useful for your research, please cite our paper :)

@misc{tsiamas2024pushing,
      title={{Pushing the Limits of Zero-shot End-to-End Speech Translation}}, 
      author={Ioannis Tsiamas and Gerard I. Gállego and José A. R. Fonollosa and Marta R. Costa-jussà},
      year={2024},
      eprint={2402.10422},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}