qa_nlp_model

This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.4123
  • eval_runtime: 64.3033
  • eval_samples_per_second: 77.757
  • eval_steps_per_second: 4.868
  • epoch: 0.0
  • step: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jolual2747/qa_nlp_model

Finetuned
(7150)
this model