jonatasgrosman's picture
Update README.md
41d8fc9
|
raw
history blame
8.09 kB
metadata
language: fr
datasets:
  - common_voice
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: Voxpopuli Wav2Vec2 French by Jonatas Grosman
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice fr
          type: common_voice
          args: fr
        metrics:
          - name: Test WER
            type: wer
            value: 17.62
          - name: Test CER
            type: cer
            value: 6.04

Wav2vec2-Large-FR-Voxpopuli-French

Fine-tuned facebook/wav2vec2-large-fr-voxpopuli on French using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-fr-voxpopuli-french")
audio_paths = ["/path/to/sagan.mp3", "/path/to/asimov.wav"]

transcriptions = model.transcribe(audio_paths)

Writing your own inference script:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
"CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." CE DERNIER A ÉVOLÉ TOUT AU LONG DE L'HISTOIRE ROMAINE
CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNESTIE ACHÉMÉNIDE ET SEPT DES SACENNIDES
"J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGE SUR LES AUTRES
LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS
IL Y A MAINTENANT UNE GARE ROUTIÈRE. IL A MAINTENANT GULA E RETIREN
HUIT HUIT
DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION DANS LATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION
LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZ ÉPISODES
ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES
ZÉRO ZÉRO

Evaluation

The model can be evaluated as follows on the French (fr) test data of Common Voice.

import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")

Test Result:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-16). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

Model WER CER
jonatasgrosman/wav2vec2-large-xlsr-53-french 15.90% 5.29%
jonatasgrosman/wav2vec2-large-fr-voxpopuli-french 17.62% 6.04%
Ilyes/wav2vec2-large-xlsr-53-french 19.67% 6.70%
Nhut/wav2vec2-large-xlsr-french 24.09% 8.42%
facebook/wav2vec2-large-xlsr-53-french 25.45% 10.35%
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French 28.22% 9.70%
Ilyes/wav2vec2-large-xlsr-53-french_punctuation 29.80% 11.79%
facebook/wav2vec2-base-10k-voxpopuli-ft-fr 61.06% 33.31%

Citation

If you want to cite this model you can use this:

@misc{grosman2021wav2vec2-large-fr-voxpopuli-french,
  title={Wav2Vec2 French by Jonatas Grosman},
  author={Grosman, Jonatas},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-fr-voxpopuli-french}},
  year={2021}
}