|
--- |
|
language: it |
|
license: apache-2.0 |
|
datasets: |
|
- common_voice |
|
- mozilla-foundation/common_voice_6_0 |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- it |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
- robust-speech-event |
|
- mozilla-foundation/common_voice_6_0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Italian by Jonatas Grosman |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice it |
|
type: common_voice |
|
args: it |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 9.41 |
|
- name: Test CER |
|
type: cer |
|
value: 2.29 |
|
- name: Test WER (+LM) |
|
type: wer |
|
value: 6.91 |
|
- name: Test CER (+LM) |
|
type: cer |
|
value: 1.83 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: it |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 21.78 |
|
- name: Test CER |
|
type: cer |
|
value: 7.94 |
|
- name: Test WER (+LM) |
|
type: wer |
|
value: 15.82 |
|
- name: Test CER (+LM) |
|
type: cer |
|
value: 6.83 |
|
|
|
|
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice it |
|
type: common_voice |
|
args: it |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 9.36 |
|
- name: Test CER |
|
type: cer |
|
value: 2.33 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Italian |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the [Common Voice](https://huggingface.co/datasets/common_voice). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) |
|
|
|
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows... |
|
|
|
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: |
|
|
|
```python |
|
from asrecognition import ASREngine |
|
|
|
asr = ASREngine("it", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-italian") |
|
|
|
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] |
|
transcriptions = asr.transcribe(audio_paths) |
|
``` |
|
|
|
Writing your own inference script: |
|
|
|
```python |
|
import torch |
|
import librosa |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
LANG_ID = "it" |
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-italian" |
|
SAMPLES = 10 |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = batch["sentence"].upper() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
predicted_sentences = processor.batch_decode(predicted_ids) |
|
|
|
for i, predicted_sentence in enumerate(predicted_sentences): |
|
print("-" * 100) |
|
print("Reference:", test_dataset[i]["sentence"]) |
|
print("Prediction:", predicted_sentence) |
|
``` |
|
|
|
| Reference | Prediction | |
|
| ------------- | ------------- | |
|
| POI LEI MORÌ. | POI LEI MORÌ | |
|
| IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI. | IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI | |
|
| "FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE." | FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE | |
|
| IL VUOTO ASSOLUTO? | IL VUOTO ASSOLUTO | |
|
| DOPO ALCUNI ANNI, EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI. | DOPO ALCUNI ANNI EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI | |
|
| SALVATION SUE | SALVATION SOO | |
|
| IN QUESTO MODO, DECIO OTTENNE IL POTERE IMPERIALE. | IN QUESTO MODO DECHO OTTENNE IL POTERE IMPERIALE | |
|
| SPARTA NOVARA ACQUISISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA. | PARCANOVARACFILISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA | |
|
| IN SEGUITO, KYGO E SHEAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE. | IN SEGUITO KIGO E SHIAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE | |
|
| ALAN CLARKE | ALAN CLARK | |
|
|
|
## Evaluation |
|
|
|
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset mozilla-foundation/common_voice_6_0 --config it --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |